
 

 

 
 
 

 
 
 
 
 
 
 

Shear Strength of Unfilled and Rough Rock 
Joints in Sliding Stability Analyses of 

Concrete Dams 
 
 
 

Fredrik Johansson 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Doctoral Thesis 
 

Division of Soil and Rock Mechanics 
Department of Civil and Architectural Engineering 

Royal Institute of Technology 
 

Stockholm 2009 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
TRITA-JOB PHD 1013 
ISSN 1650-9501 



Contents 

 i

 
 

CONTENTS 
 
 
ACKNOWLEDGEMENTS……………………………………………... v 
  
SUMMARY………………………………………………………………. vii 
  
SYMBOLS AND NOTATIONS................................................................ ix 
  
1. INTRODUCTION…………………………………………………….. 1 
1.1 Background.…………………………………………………………… 1 
1.2 Objectives……………………………………………………………... 2 
1.3 Disposition of the thesis………………………………………………. 2 
1.4 Extent and limitations............................................................................. 3 
  
2 LITERATURE STUDY: SLIDING STABILITY ANALYSES…...... 5 
2.1 Introduction…………………………………………………………… 5 
2.2 Principles of stability analyses…………….………………………….. 6 

2.2.1 Basic principles..……………………………………………… 6 
2.2.2 Factor of safety…….………………………………………….. 7 
2.2.3 Probability of failure………………………………………….. 9 
2.2.4 Limit state analyses with partial factors of safety…………….. 10 
2.2.5 Acceptance requirements……………………………………... 12 

2.3 Methods of sliding stability analyses………………………………..… 14 
2.3.1 The sliding resistance method………………………………… 14 
2.3.2 The shear friction method…………………………………….. 15 
2.3.3 The limit equilibrium method…………………………............ 18 

2.4 Laws, regulatory rules and guidelines.………………………………... 21 
2.4.1 The Swedish guidelines for dam safety, RIDAS...…………… 22 
2.4.2 Guidelines used in other countries..…………………………... 23 
2.4.3 Eurocode……………………………………………………… 25 

2.5 Summary…………...………………………………………………….. 26 
  
3 LITERATURE STUDY: SHEAR STRENGTH OF UNFILLED 
AND ROUGH JOINTS…………………………………………….......... 

 
29 

3.1 Introduction……………………………………………………............ 29 
3.2 Failure criteria……………………………..…………………………... 29 
3.3 Summary…………………………………………...………………….. 43 
  
4 A CONCEPTUAL MODEL FOR PEAK SHEAR STRENGTH OF 
UNFILLED AND ROUGH JOINTS…..…...…………………………... 

 
45 

4.1 Introduction………………………….……………………………...… 45 
4.2 Fundamental mechanics of friction…………………………………… 45 
4.3 Description of surface roughness…...…………………………............ 50 
4.4 Contact area during shear…………………………..…………………. 54 
4.5 Frictional component due to surface roughness………………………. 61 
4.6 Conceptual model……….……………………………..……………… 65 



Shear strength of unfilled and rough rock joints in sliding stability analyses of concrete dams 

 ii

4.7 Verification analyses…..……………………………………………… 71 
4.7.1 Grain size scale……..………………………………………… 71 
4.7.2 Full size scale…………………………………………………. 74 

4.8 Conclusions……………………………………………………............ 78 
  
5. LABORATORY AND IN SITU SHEAR TEST AT LÅNGBJÖRN 
HYDROPOWER STATION………….………………………………… 

 
79 

5.1 Introduction…………………………………………………………… 79 
5.2 Previously performed laboratory shear tests…..……………………… 81 
5.3 Laboratory shear tests performed at SP……………………………….. 82 

5.3.1 Introduction…………………………………………………… 82 
5.3.2 Test samples…………………………………………………... 82 
5.3.3 Test set up and procedure for shear tests………………….….. 85 
5.3.4 Results…………………………………………….….……...... 85 
5.3.5 Summary and interpretation of results……...…………............ 88 

5.4 Laboratory shear tests performed at LTU…...……………………….... 89 
5.4.1 Introduction…………………………………………………… 89 
5.4.2 Obtaining the samples…….…………………………………... 89 
5.4.3 Preparation of samples…….………………………….............. 91 
5.4.4 Test set up and procedure for shear testing………………........ 92 
5.4.5 Correction of test data………………………………………… 93 
5.4.6 Results…………………………………………………...…..... 95 
5.4.7 Estimation of JCS from Schmidt rebound tests.………............ 97 
5.4.8 Estimation of JRC from pull tests……………..……………… 97 
5.4.9 Measurements of surface roughness with optical scanning....... 99 
5.4.10 Summary and interpretation of results…...………….............. 104 

5.5 In situ shear test………………………………………………….…..... 105 
5.5.1 Introduction…………………………………………………… 105 
5.5.2 Creation of test block…………………………………............. 105 
5.5.3 Test set up and procedure for shear test………………............. 107 
5.5.4 Results……..………………………………………………….. 111 
5.5.5 Measurements of surface roughness with optical scanning....... 115 
5.5.6 Summary and interpretation of results…….………………….. 119 

5.6 Summary and interpretation of results for all shear tests.……….…..... 120 
5.6.1 Introduction…………………………………………………… 120 
5.6.2 Summary……………..…………..…………………………… 120 
5.6.3 Implementation of conceptual model…………………............. 123 
5.6.4 Analyses on the distribution of contact points for sample S6 
and L7……………………………………………………………….. 

 
126 

5.6.5 Discussion on the potential contact area ratio at different 
sampling distances………………………………………………….. 

 
130 

5.6.6 Discussion on the matedness constant…...………………........ 130 
5.7 Conclusions……………..…………..………..………………….…..... 132 
  
6 DISCUSSION ON DETERMINISTIC AND RELIABILITY 
BASED METHODS IN SLIDING STABILITY ANALYSES………... 

 
133 

6.1 Introduction…………………………………………………………… 133 
6.2 The analysed monolith...…….………………………………………… 133 
6.3 Estimation of shear strength…...……………………………………… 134 



Contents 

 iii

6.3.1 Basic friction angle…………………………………………… 134 
6.3.2 Dilation angle………...……………………………….............. 134 

6.4 Input data………………….…...……………………………………… 136 
6.5 Deterministic analyses…....………………….……...………………… 137 
6.6 Theory of reliability based design…….……..……...………………… 138 
6.7 Reliability requirements………...…….……..……...………………… 140 
6.8 Reliability analyses……………...…….……..……...………………… 141 
6.9 Summary and discussion………..…….……..……...………………… 145 
6.10 Conclusions…………………….………..………...………………… 147 
  
7. CONCLUSIONS…………….………………………………………… 149 
  
8. SUGGESTIONS FOR FUTURE WORK……………………………. 153 
  
9. REFERENCES………………………………………………………... 155 
  
  
APPENDIX  
  
A. Results from shear tests performed at LTU….………………………… I 
  
B. Photos of LTU samples after shear testing….…………………………. IX 
  
C. Assumed normal distributions for basic friction angle ………...……… XXIII 
  
D. Assumed normal distributions for dilation angle…….………………… XXV 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Shear strength of unfilled and rough rock joints in sliding stability analyses of concrete dams 

 iv

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Acknowledgements 

 v

ACKNOWLEDGEMENTS 

 
First of all, I would like to express my gratitude to my supervisor Professor Håkan 
Stille; for his invaluable advices, patience and encouragement throughout this 
work.  
 
Special thanks are also acknowledged to M. Sc. Karl Rytters who initiated the 
project. Without him, this project would not have been realized. 
 
This project was financed by several participants. I would like to express my 
appreciation to Tomas Franzén together with Mikael Hellsten at SveBeFo. I am 
also most grateful to the other financiers, who are the Swedish power company’s 
research and development organisation, ELFORSK, the Swedish construction 
industry’s organisation for research and development, SBUF, the Swedish nuclear 
waste management, SKB, and the technical consultant firm SWECO 
Infrastructure AB.  
 
During this project, the work has been followed by a reference group, consisting 
of persons competent in the subject. The group has assisted with valuable 
comments and discussions. A debt of gratitude is acknowledged to the persons 
who have participated in this group, which are: 
 

− Tomas Franzén, SveBeFo 
− Mikael Hellsten, SveBeFo 
− Anders Gustafsson, SWECO Infrastructure AB 
− Carl-Olof Söder, SWECO Infrastructure AB 
− Catrin Edelbro, LTU 
− Karin Hellstadius, Vattenfall Power Consultant AB 
− Rolf Christiansson, SKB 
− Tommy Flodin, FORTUM 

 
Vattenfall AB, for financial support and permission of using Långbjörn 
hydropower station for shear testing of rock joints and discussion on different 
methods for sliding stability analyses.  
 
Per Delin, Geometrik, who helped me with the test set-up and measurements 
during the in situ shear test.  
 
Marie Westberg, Vattenfall Vattenkraft AB, for fruitful discussions regarding 
dam safety and reliability based design and for assistance with the program 
Comrel. 
 
The staff at Complab, LTU, for assistance with the shear testing. 
 
Kenneth Strand, Svensk Verktygsteknik, who performed the optical scanning of 
the joint surfaces. 



Shear strength of unfilled and rough rock joints in sliding stability analyses of concrete dams 
 

 vi

 
Trotte and Peter, SBT, for their assistance with the in situ shear test. 
 
And for all additional people not named here who has participated and helped me 
in my work. 
 
I would also like to thank my colleagues and staff members at the department of 
soil and rock mechanics for their stimulating and interesting discussions and 
support.  
 
Finally, to my son Filip and my dear Camilla, I would like to express my love and 
gratitude to their support during this period. 
 
 
Fredrik Johansson 
 
Stockholm, March 2009 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Summary 

 vii

SUMMARY 

 
The horizontal water load combined with uplift forces implies that concrete dams 
are sensitive for sliding. At the same time, the safety of concrete dams against 
sliding in the rock foundation is associated with large uncertainties. One of the 
main uncertainties regards the shear strength of rock joints.  
 
Several failure criteria exist to express the shear strength for unfilled and rough 
rock joints. However, these criteria do not in general consider a possible scale 
effect which means that the shear strength could be lower at larger scales. Some 
suggestions exist for how a possible scale effect could be considered, but these 
are mainly based on empiric grounds. This means that there exists a need of a 
more detailed and conceptual understanding on the scale effect of rock joints.  
 
In an attempt to increase the understanding on the scale effect of unfilled and 
rough rock joints, a conceptual model was derived. The model is based on the 
assumptions that contact points occur at the steepest asperities facing the shear 
direction and that their total area could be expressed with adhesion theory. Fractal 
theory is used in order to idealize the surface roughness by superposition of 
asperities at different scales. Based on changes in the size and number of contact 
points, the conceptual model suggests that the scale effect does not occur for all 
types of rock joints. Perfectly mated joints are suggested to not exhibit any scale 
effect while a considerable scale effect could be expected for unmated joints. 
 
The practical implications from this, for foundations with unfilled joints, is that 
unmated joints with large aperture are most critical for the sliding stability of 
concrete dams, since these joints probably are the ones with longest persistence 
and lowest shear strength. 
 
In order to study the scale effect of rock joints further, eighteen shear tests at 
different scales were performed. All of the samples were taken from the rock 
foundation at Långbjörn hydropower station. Possible scale effects could be 
observed, but no firm conclusions could be made, mainly due to different surface 
characteristics of the tested joints. Three of the samples were also used to 
investigate the accuracy of the conceptual model. This investigation revealed that 
it may be necessary to distinguish between weathered and unweathered joints, 
since the distribution of contact points appears to become more randomly 
distributed for a weathered joint which in turn results in lower friction angles. 
 
In Sweden, dam safety is governed by the Swedish power company’s guidelines 
for dam safety, RIDAS. When the Swedish guidelines were compared with 
guidelines and regulations in other countries, it was realized that there exists a 
need for a more balanced evaluation of the sliding stability for concrete dams 
founded on rock in Sweden. In a first step of development, it can be based on 
safety factors and an increased use of investigations. However, in a second step, a 
natural way of the development of RIDAS would be in a direction towards 
reliability based methods.  
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SYMBOLS AND NOTATIONS 

 
Commonly used symbols and notations are presented below if not otherwise 
stated in the text. Others are defined as they first appear. 
 
Roman Letters 
 
A area [m2]  
Ag sample area at grain scale [m2]  
An sample area at full size [m2]  
Ac true contact area [m2]  
Ac,r true contact area ratio [-]  
Ac,av average area of contact points  
Ac,g true contact area at grain size [m2]  
Ac,i contact area of contact point i [m2]  
Ac,n true contact area at full size [m2]  
Ac,p potential contact area ratio [-]  
Ao maximum potential contact area ratio (Grasselli 2001)  
a amplitude constant based on asperity base length  
C roughness parameter (Grasselli 2001)  
c cohesion [MPa]  
ci cohesion of intact rock [MPa]  
COV coefficient of variation defined as the ratio between standard 

deviation and mean value 
 

Fn,0 initial normal force at contact prior to shearing [N]  
FS factor of safety  
H horizontal force [N] or Hurst exponent [-]   
hasp asperity height [mm]  
i dilation angle, inclination angle of asperity [deg.]  
im maximal dilation angle [deg.]  
in dilation angle at full scale [deg.]  
JRC joint roughness coefficient (Barton and Choubey 1977)  
JCS joint wall compressive strength (Barton and Choubey 1977)  
k matedness constant [-]   
L length [m]   
Lasp asperity base length [mm]  
Lasp,g asperity base length at grain size [mm]  
Lasp,max maximum asperity base length for the sample [mm]  
Lasp,n asperity base lengths on the joint [mm]  
Lg length of sample at grain size [mm]  
Ln length of sample at full size [mm]  
M limit state function  
N normal force [N]  
n numbers [-]  
ng number of contact points at grain size [-]  
nn number of contact points on the full size joint [-]  
Pi resultant horizontal force acting on a vertical face of wedge i  
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Ppas passive wedge resistance [N]  
p probability [-]  
pf probability of failure [-]  
qu yield stress of surface [N/m2]  
R resistance [N] or Schmidt rebound number [-]  
S load [N]  
s adhesive strength [N/m2]  
T shear force [N]  
U uplift force [N]  
V vertical force [N]  
V´ effective vertical force [N]  
W’ effective weight of passive wedge [N]  
X* design value of variable X  
Xk characteristic value of variable X  
Zx normalized form of variable X  
Z2 the root mean square of the first derivate of the sample [-]  

 
Greek Letters 
 
αx sensitivity factor of variable X 
β safety index 
βt target safety index 
Δx sampling distance [mm] 
γ unit weight [kN/m3] 
γx partial factor of variable X 
δasp,max approximate relative shear displacement for maximal unmatedness 
δi,max shear displacement at maximal dilation angle [mm] 
δs,p shear displacement at peak shear strength [mm] 
μ coefficient of friction 
μall allowable coefficient of friction 
μx mean of variable X 
θ*max maximum measured dip angle (maximum apparent dip angle in  

Grasselli 2001)  
θ* measured dip angle (apparent dip angle in Grasselli 2001) 
σx standard deviation of variable X 
σci uniaxial compressive strength of intact rock or joint surface [MPa] 
σn normal stress [MPa] 
σ´n effective normal stress [MPa] 
σti tensile strength of intact rock [MPa] 
τ shear stress [MPa] 
τf shear stress at failure [MPa] 
τp peak shear strength [MPa] 
φ friction angle [deg.] 
φb basic friction angle [deg.] 
φb,av average basic friction angle [deg.] 
φb,p basic friction angle at peak shear strength [deg.] 
φi internal friction angle of intact rock [deg.] 
φp peak friction angle [deg.] 
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1 INTRODUCTION 

1.1 Background 
 
In Sweden there exist about 10 000 dams of varying size and age, 1 000 of them 
are related to hydropower. Of these, about 200 are high dams, i.e. with a height 
exceeding 15 m. Most of the hydro power dams were built during the 1950’s, 60’s 
and 70’s (Cederström 1995). Several of them are concrete structures founded on 
rock. The horizontal water pressure, combined with acting uplift forces, makes 
these concrete gravity dams sensitive to sliding.  
 

 
Figure 1.1 Spillway of the concrete dam at Pengfors hydroelectric power station, one of many in 
Sweden (Photo: SWECO VBB). 
 
Sliding of a dam occurs along the plane with lowest shear resistance. The failure 
can occur either in the concrete dam, in the interface between dam and foundation 
or in the foundation. The shear resistance in the concrete dam is normally of no 
problem, since the mechanical properties of the concrete and the structural system 
of the dam is well known. In the interface between dam and foundation, the 
available shear strength is more uncertain, mainly depending on if cohesion is 
present or not. However, the largest uncertainties of the available shear strength 
concern the rock foundation.  
 
International experiences show that failure in the foundation is a main source to 
the failure of concrete dams. A study performed by ICOLD (1995) showed that 
foundation problems due to internal erosion and insufficient shear strength of the 
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foundation were the most common causes of failure, each accounting for 21%. 
One example is the failure of the Malpasset arch dam in France 1959, where 
sliding failure occurred for a rock wedge in the foundation. The failure caused a 
50 m high wave killing over 400 people (Bellier 1976).  
 
During 1950’s, 60’s and 70’s, the knowledge about rock mechanics was on a 
lower level than today. In the last decades, significant progresses have been made 
in the field of rock mechanics, and the knowledge of rock mass behavior has 
increased. Despite the improved knowledge of rock mass behaviour, there still 
exist significant difficulties to evaluate the safety against sliding in the 
foundation. For concrete gravity dams founded on a rock mass of good quality, 
which is common in Sweden, the main uncertainties originate from the shear 
strength and persistence of horizontal and sub-horizontal rock joints. This thesis 
focuses on the former, the shear strength of rock joints.  
 
With the large amount of concrete dams of varying age that exist in Sweden, 
together with other types of large structures founded on rock, it is important for 
society to be able to evaluate the safety against failure in the foundation for these 
types of structures. Especially with respect to the possible consequences if failure 
occurs. Furthermore, if improved evaluations of the sliding stability can be 
performed; expensive measures such as post-tensioned anchors can be avoided. 
 

1.2 Objectives 
 
This thesis aims at: 
 

− Describing the knowledge and current state of practice in sliding stability 
analyses of concrete gravity dams. 

 
− Increasing the understanding about the conceptual behaviour for unfilled 

and rough joints, and how the shear strength for these joints is affected by 
scale. 

 
− Compare and discuss different methods to express the calculated safety for 

sliding stability analyses of concrete gravity dams where persistent 
horizontal or sub-horizontal rock joints are present. 

 

1.3 Disposition of the thesis 
 
In order to get an overview of the thesis, a short description of the contents in 
each chapter is given. 
 
The thesis starts with a general literature study about sliding stability analyses 
which is presented in chapter two. At first, some fundamental principles of 
stability analysis are looked upon. After that, different methods of sliding stability 
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analysis are reviewed. In the end of the study, laws, regulatory rules and 
guidelines in the subject are studied. Finally, a summary of the chapter is 
presented. 
 
Chapter three concerns the estimation of shear strength for unfilled and rough 
joints, and how the shear strength for these joints is affected by scale. The chapter 
contains a literature survey of methods available to estimate the shear strength for 
laboratory samples and full sized joints in the rock mass. 
 
In chapter four, the behavior of unfilled and rough joints is studied further. Based 
on a deeper literature study on the behavior of rock joints, together with analyses, 
a conceptual model is suggested. In the end of the chapter, verification analyses 
are performed.  
 
Results from laboratory and in situ shear tests at Långbjörn hydropower station is 
presented in chapter five. These tests are performed at different scales in order to 
obtain information for estimating the shear strength of the horizontal joints 
present in the rock mass and to analyze if any scale effect could be observed. In 
addition to this, results from characterization of surface roughness from some of 
the samples are used to estimate the friction angle with the conceptual model 
proposed in chapter four. Calculated friction angles with the conceptual model are 
compared against observed friction angles and a discussion and interpretation of 
the results are performed. 
 
Deterministic and reliability based sliding stability analyses are performed and 
compared in chapter six for a concrete monolith at Långbjörn hydropower station. 
At the end of the chapter, a discussion concerning some principal differences 
between the two methods are held and conclusions are presented. 
 
Conclusions of the work are presented in chapter seven, while chapter eight 
contains suggestions for future work. 
 

1.4 Extent and limitations 
 
This thesis focuses on concrete gravity dams founded on rock. In other words a 
large massive structure considered as one unit founded on a rock foundation. 
 
It mainly concerns a sliding failure mode in the foundation. Overturning or 
overstressing of the material capacity is not given any attention. Furthermore, 
failure modes in the overlying structure are not considered. 
 
The study is focused on Swedish conditions. These conditions include a fractured 
rock mass with more or less horizontal joints in combination with vertical or sub 
vertical sets of discontinuities. The horizontal joints focused on for sliding 
stability are unfilled and rough joints. No attention has been given to seismic 
loading.  
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2 LITERATURE STUDY: SLIDING STABILITY ANALYSES 

2.1 Introduction 
 
The aim with this chapter is to describe the knowledge and current state of 
practice for sliding stability analyses of large structures founded on rock. The 
study is focused on the fundamental principles of stability analyses and the 
calculation methods together with guidelines and regulations used to assess the 
sliding stability. 
 
However, stability analyses in general consist of more components than the ones 
mentioned above. In short, the process can be described according to Figure 2.1. 
 

 
 
Figure 2.1 Main components in stability analyses for foundation on rock 
 
The calculated or expressed safety is in general determined from knowledge about 
the load and the resistance. The process to estimate the resistance of the rock mass 
starts with the development of the geological model. This model is mainly 
developed from results of site investigations. However, which investigations that 
are necessary, or how they should be performed, will not be further studied.  
 
Based on the information from the geological model, possible failure modes are 
identified. Different modes of failure can be possible, and it is necessary to 
analyze them all to find the weakest link. Material models representative for the 
rock mass behaviour are chosen to model it. For large structures such as concrete 
gravity dams, where rock masses with different characteristics may exists in the 
foundation, several types of models may be necessary for different parts of the 
foundation. Inputs to these models are a number of rock mechanical parameters, 
which can be determined through in situ or laboratory tests. Another common 



Shear strength of unfilled and rough rock joints in sliding stability analyses of concrete dams 

 6 

technique in order to estimate the parameters representative for the rock mass is to 
use empirical correlations through rock mass classification systems and/or failure 
criteria, since laboratory and especially in situ test are expensive and time 
consuming.  
 
The geometry of the structure and the geological model, together with assumed 
failure mode and chosen rock mass material model, are used to create a simplified 
model of the problem. Thereafter, the load together with resistance is calculated. 
Two main types of calculation methods exist, the analytical methods and the 
numerical methods. In addition to those, empirical methods can be used. 
However, this last method is primarily used for smaller foundations.  
 
Design in rock masses is often associated with uncertainties. Therefore, it may be 
important to verify the expected behaviour with measurements, and take required 
measures if the measured behaviour deviates from the expected one. This concept 
of “active design” can be an important component of the analyses.  
 
Usually, for the assessment of existing structures, stability is first calculated 
relatively roughly. An increased accuracy in the calculations is added if they 
indicate a low safety. If stability remains insufficient after this, measures have to 
be undertaken. For new structures, the principle is the same, with rough methods 
in the basic design and more refined calculations and investigations in the detail 
design.  
 
For a more detailed description of all the components described above, see 
Johansson (2005).  
 
This chapter contains a study that starts with a review of the principles for sliding 
stability analyses. Key questions are: (1) which fundamental assumptions are the 
analyses based upon; (2) how safety is expressed; and (3) what the acceptance 
requirements are based upon. Subsequently, different analytical methods are 
investigated. In addition to this, laws, regulatory rules, and guidelines on the 
subject, in Sweden and in other countries, are studied. Finally, a summary of the 
performed study is presented. 
 

2.2 Principles of stability analyses 

2.2.1 Basic principles 
 
In general, stability analyses is based on the assumption that load and resistance is 
separated and independent of deformation. The principle is that the resistance or 
capacity, R, for the structural component considered should be equal to or greater 
than the applied load, S. The criterion is given by equation 2.1. 
 

SR ≥          (2.1) 
 
This assumption is only an approximation. In reality, the load to some extent can 
be related to the deformation. Under certain conditions, this dependence is more 
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pronounced. For example, it might occur when the stiffness of the rock 
foundation to a high degree is varying. At these occasions it is important to 
remember this limitation, and also to study the general behaviour of this 
dependence. 
 
All stability analyses are associated with certain amounts of uncertainty. 
Regarding rock masses, the uncertainty is larger than for manufactured materials 
such as steel and concrete. They have been formed under millions of years and 
have a natural spatial variation of its properties. In addition to this, the 
information is always limited. It is hidden in the rock mass, revealing its 
properties costs time and money. Stability analyses are therefore to a large extent 
a question of finding the right balance between the load, the resistance, the 
uncertainties, and also the consequences of failure. 
 
To find this balance, two components are generally used. The first is an 
expression for the calculated safety. The calculated safety can be expressed in 
several different ways. The most frequently used expressions are: 
 

• A total factor of safety 
• A probability of failure 
• Limit states with partial factors of safety 

 
The second component is the acceptance requirement. It determines which 
magnitude the calculated safety must have in order to obtain an acceptable risk. 
 

2.2.2 Factor of safety  
 
The most common way to express safety for foundations on rock is with the 
factor of safety. The factor of safety, FS, is obtained by dividing the resistance, R, 
with the acting load, S, according to equation 2.2.  
 

S
RFS =         (2.2) 

 
The values of R and S are expressed as deterministic values. However, one 
shortcoming with the factor of safety is that load and resistance depend on a 
number of parameters. In reality these parameters can exist in wide ranges, i.e. 
probability distributions. Examples of such distributions are shown in Figure 2.2. 
This means that for a given value of the resistance and the load, having the same 
factor of safety, different probabilities of failure can exist (Green 1989). Case b in 
Figure 2.2 illustrates a condition which is common for foundations on rock; good 
control of the load and poor control of the resistance. This illustrates the 
possibility to calculate an acceptable factor of safety but still have an 
unacceptable high risk of failure if these distributions are not considered. 
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Figure 2.2 Possible load and resistance distributions (From Becker 1996 after Green 1989): (a) 
very good control of R and S; (b) mixed control of R and S; (c) poor control of R and S.  
 
ICOLD (1993) describes with a striking example, see Figure 2.3, how different 
variations of the parameter and number of tests can change the probability of 
failure in a ratio of 100 000 with the same factor of safety. 
 

 
Figure 2.3 (A) Factor of safety FS=1.5 Scatter V=0.2; (B) Factor of safety FS=1.5 10 tests; (1) 
Probability of failure; (2) Number of tests; (3) Scatter V, defined as the standard deviation divided 
with the mean value (From ICOLD 1993). 
 
Another shortcoming or disadvantage described by Becker (1996) is that the 
factor of safety does not distinguish between the sources of uncertainties, such as 
parameter uncertainty, model uncertainty or system uncertainty. Instead, all 
uncertainties are lumped into a single value. He is also of the opinion that it is not 
possible to exactly define safety with a single number due to the uncertainties. 
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The factor of safety and other ways of expressing safety are only relative and not 
absolute; the main task for them is to function as an aid or tool for managing 
safety. 
 
However, its simplicity is also its strength. In the early era of stability analyses, it 
was an easy method to calculate safety. The lack of accuracy was compensated 
with experience. With time, empirical acceptance requirements were developed 
that successfully considered most of the uncertainties in the analyses. Today, the 
same method is still used even though the techniques to determine load and 
resistance have been refined. We still have uncertainties on the exact safety 
against failure, and continue to base our analyses on these partly empirical 
acceptance requirements. 
 

2.2.3 Probability of failure 
 
The spatial variation of rock mass properties and the awareness of the 
shortcomings with the factor of safety have lead to an increasing trend towards 
probabilistic or reliability based methods in rock engineering. With these 
methods, the probability of failure can be expressed as (Melchers 1999): 
 

[ ]0≤−= SRpp f        (2.3) 
 
where, R and S are described by a known probability density function. It can also 
be expressed according to equation 2.4: 
 

[ ]0≤= Mpp f        (2.4) 
 
where, M is the “limit state function”. It defines the limit between the “safe” and 
the “unsafe” region. The probability of limit state violation is equal to the 
probability of failure. In general, the problem can not be expressed with R and S 
as two basic variables. The problem is more complex than that, and a number of 
basic variables are needed. If the vector X represents all variables in the problem, 
the limit state function can be expressed as M(X). The probability of failure can 
then be expressed according to equation 2.5. 
 

[ ]
(X) 0

(X) 0 ... ( )f x
M

p p M f x dx
≤

= ≤ = ∫ ∫     (2.5) 

 
The integrand above can be solved with three different methods (Melchers 1999): 
 

1. Direct integration which is possible only in some special cases. 
2. Numerical integration, such as the Monte Carlo technique. 
3. Obviating the integrand through a transformation into a multi-normal joint 

probability density function and instead solve it analytically. 
 
For an account of these methods, see Melchers (1999) among others. 
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With failure probability it exist a theoretical possibility to express the probability 
of failure. The method has several potential advantages. Four of them were 
described by Becker (1996). He means that it has the potential advantages of 
being more realistic, rational, consistent and widely applicable. He is also of the 
opinion that the most important disadvantage of the method is that without proper 
information and data, these advantages can not be realized in practical design 
situations. Another disadvantage is pointed out in ICOLD (1993); it says that 
failure probability is too speculative to offer any practical solution to the 
engineer’s problem. For example, it is a major difficulty to estimate uncertainty in 
numerical terms. 
 
It should also be kept in mind that this technique normally assumes independence 
between the basic variables. Also, correlation structures in the rock mass may 
exist, which results in autocorrelation of the basic variables, i.e. a reduction of its 
variance. For geotechnical problems, Olsson (1986) means that neglecting the 
autocorrelation results in too strong structures without any direct apprehension of 
the magnitude of the underestimation of the soil’s resistance. If autocorrelation 
exists in the rock mass, the same statement is valid for rock masses. Furthermore, 
the analyses are in general performed with the assumption that the mechanical 
system consist of one component. An incorrect assumption if autocorrelation 
exists. All of these factors have a significant effect on the probability of failure, 
and must be considered in a correct manner if the probability of failure should be 
determined accurately. 
 

2.2.4 Limit states analyses with partial factors of safety 
 
Limit states analyses with partial factors are usually referred to as a level 1 
method of reliability analyses (Melchers 1999). The reason for this is that the 
partial factors can be determined with higher orders of reliability methods, such as 
the first order second moment reliability method (FORM), described by Thoft-
Christensen and Baker (1982). The method of partial coefficients implies that the 
calculated design value for the resistance, R*, should not be smaller than the 
calculated design value for the load, S*, according to equation 2.6: 
 

Sk
R

k* γ
γ

⋅== SRR        (2.6) 

 
where Rk and Sk are characteristic values for the resistance and the load 
respectively and γR and γS are the corresponding partial coefficients. The 
theoretical relation for a variable X between its design value, X*, the target safety 
index, βt, the partial coefficient, γx, and the characteristic value, Xk, can be 
described according to equation 2.7, under the assumption that the variables in the 
problem are normal distributed and independent of each others. 
 

XtX
X

k* σβαμ
γ

⋅⋅+== X
XX       (2.7) 
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Where αx is a sensitivity factor which describes the significance that the variable 
X has for the problem. μx is the mean value of the variable X and σx is its standard 
deviation. Studying the equation above, it can be seen that the quotient between 
the characteristic value and the partial coefficient should be a constant which 
depends on the required target safety index, the stochastic parameters of the 
variable and the sensitivity factor. 
 
The target safety index, βt, corresponds to a certain acceptable probability of 
failure. For example, the construction rules of the National Board of Housing, 
Building and Planning, BKR (Boverket 2003), states that the safety index should 
be; ≥3.7 for safety class 1; ≥4.3 for safety class 2; and ≥4.8 for safety class 3. 
These values correspond to a probability of failure of; 10-4 for safety class 1; 10-5 
for safety class 2; and 10-6 for safety class 3.  
 
Usually, two types of limit states are analysed in the design; the ultimate limit 
state (ULS); and the serviceability limit state (SLS). The ULS is related to failure 
or collapse of the structure. According to BKR (Boverket 2003), load bearing 
structures in the ULS should be designed so the safety against failure in the 
material, and against instability such as buckling and tilting etc., are adequately. It 
should be so during the construction of the structure, its lifetime, and in the event 
of fire. An advice in BKR is also to consider that deformations in the foundation 
can give rise to failure or instability. Furthermore, the structure should be 
designed with an adequate safety against overturning, uplift, and sliding. The 
structure should also be designed in such a way that the risk against progressive 
failure is insignificant. The SLS is related to normal use and function. BKR 
(Boverket 2003) states that the structure in SLS should be designed so that 
deformation, cracking and vibration do not have an injurious effect on its function 
or harm other parts of the structure. For stability analyses, only the ULS is 
normally considered. 
 
The most important advantage with partial factors is that it leads to factors which 
reflect the uncertainty they embody (ICOLD 1993). However, even if limit state 
analyses with partial factors account for different sources of uncertainty, the use 
of them does not mean that the design automatically is acceptable. Limit state 
analyses with partial factors lack an objective quantitative assessment on the 
impact of the approximations inherent in the mechanical model, and also from 
human factors. These limitations can explain why the concept with a total factor 
of safety is still in use (ICOLD 1993). Also, which Mortensen (1983) points out, 
for less conventional constructions, full consideration must be given to the effect 
of the partial coefficient system in every single case, and to establish more or less 
fixed partial factors would appear to be an attempt to kill judgements. 
 
For large structures, such as concrete gravity dams, each structure and foundation 
is unique. This means that partial factors would have to be calculated for each 
structure. It is therefore questionable as Mortensen discuss, if analyses with fixed 
partial factors are suitable for these types of structures.  
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2.2.5 Acceptance requirements 
 
When the calculated safety has been determined, it must be decided whether it is 
acceptable or not. In order to provide an aid for this decision, acceptance 
requirements or acceptance criteria exist. They are associated with the acceptable 
risk of the structure. Risk is usually defined as the product of probability and 
consequence. In general, this means that three components are necessary to make 
a correct decision in stability analyses; an acceptable risk; the probability of 
failure; and the consequences if failure occurs. 
 
Two methods are described by Melchers (1999), by which acceptance 
requirements can be founded on. The first method is to compare the calculated 
probability of failure with other risks in society, and by doing so infer acceptable 
risk for structures from these risks. In Figure 2.4, some risks associated with 
engineering projects in the society are presented. 
 

 
Figure 2.4 Risks associated with some engineering projects (From Wyllie 1999 after Whitman 
1984). 
 
The other is a socio-economic one, where a cost-benefit-risk analysis is used to 
assess the acceptable or most socio-economic probability of failure. This 
requirement is given by equation 2.8. 
 

)max()max( FfMINSCQAIT CpCCCCCBCB −−−−−−=−  (2.8) 
 
where B is the total benefit of the project, CT is the total cost of the project, CI is 
the initial cost of the project, CQA is the cost of quality assurance measures, CC is 
the cost of corrective actions in response to quality assurance measures, CINS is 
the cost of insurance, CM is the cost of maintenance, pf is the probability of failure 
for the project, CF is the cost associated with failure. The principle is illustrated in 
Figure 2.5. 
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Figure 2.5 (a) Component costs and (b) total costs as a function of pf  (After Melchers 1999). 
 
If a high safety is necessary due to severe consequences, the probability of failure 
must be small. Dams are an example of such types of structures, which falls into 
this category. This also means that the uncertainties in the stability analyses 
should be kept low. However, stability analyses of foundations on rock usually 
are associated with a substantial amount of uncertainty. The uncertainties in 
reliability assessment can be divided into the following components (Melchers 
1999); phenomenological; decision; modelling; prediction; physical; statistical; 
and human factors. Many of these uncertainties are difficult to consider when the 
calculated safety is determined. Human factors such as gross error or intervention 
are hard to estimate. Also, in most of the cases, the statistical uncertainty is large 
due to a limited number of tests. Furthermore, if new types of construction 
techniques are used, the phenomenological uncertainty may be large. Several of 
these are omitted or only approximated. As a consequence, the calculated safety 
becomes a nominal one. The exact safety is probably not possible to determine in 
the stability analyses. Therefore, the acceptance requirements to a large extent are 
based on earlier experience and nominal safety of the same type of structures. 
 
Mortensen (1983) means that factors of safety in geotechnical and foundation 
engineering to some extent are correction factors, and that the best way of 
determining acceptance requirements is by a combination of experience and back 
analysis of successful foundation constructions. An acceptance requirement based 
only on theoretical considerations implies a risk of losing extensive practical 
experience. He also means that, at least under Danish conditions, all foundation 
failures are a consequence of not considering the correct failure mode in the 
analysis. An increase in safety in these cases cannot be achieved by minor 
adjustment of the factors of safety, but must instead be achieved by more detailed 
geotechnical investigations, carrying out geotechnical calculations taking into 
account the critical factors, and by performing thorough control studies, 
measurements, and observations. 
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2.3 Methods of sliding stability analyses 
 
Two different types of sliding failure in rock joints can be distinguished for 
foundations, plane sliding and wedge sliding. In this section, different analytical 
methods to assess plane sliding will be presented. The principle for wedge sliding 
are in many ways similar to plane sliding, with the exception that the geometry of 
the wedge makes it a three dimensional problem which is more complicated to 
solve analytically. For an account of the methods regarding wedge sliding, see for 
example John (1968), Londe et al. (1969) and Hoek and Bray (1981). 
 
Before the 1900’s, the only stability criterion for dams was that the resultant 
should fall in the middle third of the foundation cross-section in order to prevent 
overturning. At the end of the 1800’s it was recognized that dam failures often 
occurred due to a downstream movement, without overturning. An awareness of 
sliding failure, and the significance of the uplift load, was developed. Stability 
analyses which accounted for those factors was started to be used at the beginning 
of the 1900’s (Nicholson 1983). Thereafter, three different methods have been 
developed to assess the safety against plane sliding. These are the sliding 
resistance method, the shear friction method and the limit equilibrium method. 
 

2.3.1 The sliding resistance method 
 
The first criterion to assess the safety against sliding was the sliding resistance 
method, which calculated a coefficient of friction, μ. This coefficient was 
calculated by dividing the sum of the forces parallel the sliding plane, ΣH, by the 
sum of the effective vertical forces normal to the sliding plane, ΣV´. This 
calculated coefficient of friction, μ, should be smaller than an allowable 
coefficient of friction, μall, according to equation 2.9.  
 

all

H
V

μ μ= ≤
′

∑
∑

       (2.9) 

 
In the USA, this method was used between the 1900’s and the 1930’s according 
to the US Army Corps of Engineers (1981). Furthermore, USACE writes that 
“Experience of the early dam designers had shown that the shearing resistance of 
very competent foundation material needs not to be investigated if the ratio of 
horizontal forces to vertical forces (ΣH/ΣV) is such that a reasonable safety 
factor against sliding results”. In other words, this method was a control against 
sliding based on experience, both for the foundation material, and for the interface 
between the foundation and the concrete.  
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2.3.2 The shear friction method 
 
The shear friction method was first published by Henna 1933 (Nicholson 1983). 
Henna introduced an equation to calculate the factor of safety against sliding for 
concrete dams based on the Coulomb equation, see equation 2.10. 
 

P
uWksFS )(1 −⋅+

=        (2.10) 

 
In equation 2.10, s1 was described as the shearing resistance without normal load, 
k as a factor for the increase of the shearing resistance, W was the dead weight of 
the structure, and u was the uplift load under the dam. P was the total load from 
water pressure perpendicular to the expected sliding direction. Today, the shear 
friction method usually has the form according to equation 2.11. 
 

∑
∑ ′+⋅

=
H
VAc

FS
φtan

      (2.11) 

 
Where c is the cohesion of the sliding plane, φ is its friction angle, and V´ is the 
effective vertical load normal to the sliding plane. The simplest form of sliding 
failure for a dam on a rock foundation is with a horizontal joint in the rock mass 
which day-light downstream the dam. Analyzing it with the shear friction method, 
a 1 m wide strip of the foundation is usually assumed. This failure mode was 
described by Underwood and Dixon (1976), and is presented in Figure 2.6. 
 

∑ + cLV φ´tanHorizontal joint

∑ H

´∑ V

L

 
Figure 2.6 Plane sliding along a horizontal joint which day-light downstream the dam (After 
Underwood and Dixon 1976). 
 
Since a one meter wide strip is assumed, equation 2.11 becomes: 
 

∑
∑ ′+⋅

=
H
VLc

FS
φtan

      (2.12) 
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where L is the length of the considered sliding plane. Equation 2.11 and 2.12 are 
frequently used for assessing sliding stability, and originates from equation 2.10. 
According to Nicholson (1983), the basic assumptions necessary for this method 
are that the definition of the factor of safety is correct, that two-dimensional 
analysis is applicable, and that the analyzed mode of failure is kinematically 
possible. When equation 2.12 is used, Underwood and Dixon (1976) point out 
that if the calculation is done after deformations have occurred in the joint, the 
residual shear strength may has to be considered and the cohesion may be absent.  
 
For low confining pressures, the apparent cohesion in joints is small. In addition 
to this, the uncertainties regarding it are large. It is therefore common to exclude 
the cohesion in the calculations. Excluding cohesion reduces equation 2.12 to: 
 

∑
∑ ′

=
H

V
FS

φtan
       (2.13) 

 
However, equations 2.11 to 2.13 are only valid for plane joints which day-light 
downstream the dam, and these cases are rare for rock foundations. Underwood 
and Dixon (1976) also give another example where the horizontal joint ends in the 
rock mass according to Figure 2.7.  
 

∑ + cLV φ´tanHorizontal joint

∑ H

´∑ V

L

Passive 
Wedge

/2−45= φα

Ppas

 
Figure 2.7 Plane sliding along a horizontal joint ending in the rock mass plus passive wedge 
resistance (After Underwood and Dixon 1976). 
 
In this case, the failure plane will consist of sliding along the horizontal joint plus 
a passive wedge. The factor of safety calculated with the shear friction method in 
this case can be expressed as: 
 

∑
∑ +⋅+⋅′

=
H

PLcV
FS pastanφ

     (2.14) 
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where Ppas is the passive rock wedge resistance. The same limitations that are 
valid for sliding along a joint day lighting downstream the dam are also valid 
here, i.e. cohesion may be absent after movement and friction angle may be 
residual. Furthermore, the vertical shear stress between the dam wedge and the 
passive wedge is neglected.  
 
In addition to these limitations, there exists another limitation with this model. To 
develop full passive resistance in the passive wedge, a larger deformation in the 
rock mass is usually necessary than the deformation necessary to obtain peak 
shear strength in the joint under the dam. Therefore, according to Underwood and 
Dixon (1976), the passive resistance and the shear strength in the joint may not be 
additive. 
 
In the examples above, the joints were horizontal. However, most joints in the 
rock mass are inclined. An inclined joint could be evaluated according to the 
same principles as shown above in equation 2.14. Nicholson (1983) described the 
following equations for an inclined sliding plane combined with a passive wedge. 
The failure mode is illustrated in Figure 2.8, and the definition of the factor of 
safety is presented in equation 2.15. 
 

∑
+

=
H
PR

FS pas         (2.15) 

 
Where R is the maximum horizontal force which can be resisted by the sliding 
plane beneath the dam wedge, Ppas is the maximum passive horizontal resistance 
by the rock wedge, and ΣH is the sum of the horizontal loads. 
 

∑ H

´∑V

Adam

Passive
rock wedge

pasα

Ppas

W´

Apas

R

Dam wedge

damα

 
Figure 2.8 Forces acting on a hypothetical dam with inclined sliding plans according to the shear 
friction method (After Nicholson 1983). 
 
For up-slope sliding, the following mathematical expressions were derived by 
Nicholson (1983) from static equilibrium: 
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And for down-slope sliding: 
 

∑ ⋅+⋅
⋅

+−⋅′=
)tantan1(cos

)tan(
damdam

damdam
dam αφα

αφ AcVR   (2.17) 

 
The passive resistance was expressed as: 
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In the three equations above, ΣV´ is the sum of vertical forces including the 
reduction from uplift forces, φ is the friction angle for the sliding plane, α is the 
angle for the inclined failure plane against the horizontal, c is the cohesion for the 
sliding plane, A is the area of the potential failure plane, and W´ is the effective 
weight of the passive rock wedge, plus any superimposed loads. Subscripts dam 
and pas stands for dam wedge and passive wedge respectively. 
 
In addition to the limitations described earlier, Nicholson (1983) described three 
more limitations associated with equation 2.16-2.18 and the shear friction method. 
The first limitations are due to the mathematics needed to solve R and Ppas. It can 
be seen that the factor of safety approaches infinity as the expression (φ±α) 
reaches 90o. The probability for this phenomenon is largest for the passive wedge, 
since the angle of inclination is more likely to be defined by relatively steeply 
dipping joints. The second limitation originates from the passive wedge force 
component. It is independent on the forces acting on the structure. Therefore, 
when the structure and the passive wedge are considered as a single block, it is 
not in static equilibrium except when the FS is unity. And finally, the application 
of the shear friction equations 2.15-2.18 is limited to failure modes along one or 
two planes only. 
 

2.3.3 The limit equilibrium method 
 
The third method to assess the safety against sliding is by the limit equilibrium 
method. The previous examples were based on the shear friction method, which 
means that the factor of safety is defined as resisting shear strength divided by the 
horizontal load. With the limit equilibrium method, the factor of safety against 
sliding is defined according to equation 2.19. 
 

τ
τ fFS =         (2.19) 

In the equation above, τf is the available shear stress at failure and τ is the shear 
stress required for equilibrium. This way to define the factor of safety is also 
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referred to as the limit equilibrium method, and can be thought of as the degree of 
shear stress mobilized (Nicholson 1983). 
 
According to Nicholson (1983), the basic assumptions required to develop the 
stability equations for the limit equilibrium method are as follows: 
 

1. The factor of safety is defined according to equation 2.19. 
2. Impending failure occurs according to the requirements imposed by 

perfectly-plastic failure theory. 
3. The maximum shear strength that can be mobilized is adequately defined 

by the Mohr-Coulomb failure criteria.  
4. Failure modes can be represented by two-dimensional, kinematically 

possible planes. 
5. The factor of safety computed from the stability equations is the average 

factor of safety for the total potential failure surface. 
6. The vertical forces between wedges are assumed to be negligible. 
7. The structural wedge must be defined by one wedge. 

 
The limit equilibrium method can be used when sliding occurs along a failure-
plane of several joints, i.e. non-plane sliding, as well as for plane sliding. For non-
plane sliding, the rock mass above the sliding plane is divided into several 
structural blocks. This method is often referred to as multiple wedge analyses. It 
is only two dimensional, and should not be mixed up with the three dimensional 
wedge stability. 
 

Yi

Xi

i:th wedge

i+1:th wedgei-1:th wedge
Vi

Hi

Pi

Pi-1

Ui

Li

iα

 
Figure 2.9 Geometry, forces, and coordinate system for an i:th wedge in a hypothetical wedge 
system (After Nicholson 1983). 
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When the factor of safety for a multiple system of n number of wedges with 
forces and angles according to Figure 2.9 is derived, it will result in n+1 
unknowns. The factor of safety should be equal for all wedges. This assumption 
produces n equations. 
 

nFSFSFSFS ==== ...21       (2.20) 
 
The final equation for the solution comes from an additional equation which 
assumes horizontal equilibrium: 
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= − =−
ni

i ii PP
1 1 0        (2.21) 

 
where Pi is the resultant horizontal force acting on a vertical face of a typical 
wedge i. Based on the equations 2.20 and 2.21, the factor of safety can be 
calculated for the system of wedges according to equation 2.22 (Nicholson 1983). 
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Where Vi is the total vertical force acting on the sliding surface for wedge i, U is 
the uplift force on the sliding surface for wedge i, and Ai is the area of the sliding 
surface for wedge i. αi is the angle of the sliding surface for wedge i with respect 
to the horizontal, negative for down-slope sliding and positive for up-slope 
sliding. Hi is the total external horizontal force acting on the wedge. The factor nαi 
can be determined with equation 2.23 below. 
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This type of analyze was one among many other techniques that was used to 
assess the stability of the Three Gorges dam foundation (Liu et al. 2003). At the 
Three Gorges dam foundation there was one special problem. The joints along the 
expected sliding path were not persistent, i.e. there existed several “rock bridges” 
between the joints. To solve this problem, the friction angle and the cohesion 
were expressed as weighted values of the joints and the bridges of intact rock 
along the potential sliding surface of the wedges in the calculation. 
 
Since the definition of the factor of safety is expressed differently in the shear 
friction method and the limit equilibrium method, it results, in most of the cases, 
in different factors of safety in the calculations. Nicholson (1983) performed a 
thorough comparison between the two methods. In the guidance given by the U.S. 
Army, the minimum acceptable factor of safety is 2.0 for the limit equilibrium 
method, while a factor of safety of 4.0 is the requirement for the shear friction 
method. Nicholson writes that: 
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”This does not necessarily imply that the overall factor of safety has been reduced 
by 50 percent. As a general rule, for a given structure with an inclined potential 
failure surface the limit equilibrium method and shear friction methods will result 
in a different and unique factor of safety. The magnitude of the difference is 
dependent on the geometry of the problem, loading conditions, and resisting 
shear strength parameters”. 
 
This difference in factor of safety between the two methods clearly shows one of 
the difficulties in expressing the safety for a structure with a single factor of 
safety. The calculated safety is a nominal safety, and the assumptions that the 
calculations are based upon, including the definition of the safety factor, must be 
taken into consideration. 
 

2.4 Laws, regulatory rules and guidelines 
 
In Sweden, the law about technical property demands on constructional work, 
BVL, and the regulation about technical property demands on constructional work 
BVF, contain the statues regarding bearing capacity, stability, and durability. 
Design according to the construction rules of the National Board of Housing, 
Building, and Planning, BKR (Boverket 2003), makes sure that these laws and 
statues are obeyed. According to the plan and building law, PBL, it is the owner’s 
responsibility to see that these demands are fulfilled.  
 
Chapter four in BKR contains construction rules for geotechnical structures, but 
those are primarily for earth structures. However, BKR are not valid for all types 
of structures. One example is that the National Road Administration has the right 
to announce regulations regarding roads and facilities that belongs to the road or 
street. For bridges, the National Road Administration has issued the Swedish 
bridge design code, Bro 2004 (Vägverket 2004). Another example is Swedish 
dams, which are not covered by the BKR. For dams, the owner has a strict 
responsibility in the event of failure or any other accident. As a consequence, the 
Swedish power companies, through the organisation Swedenergy, have issued the 
Swedish power companies guidelines for dam safety, RIDAS (Svensk Energi 
2008). 
 
In 2006, the transitional period started for the Eurocode regarding geotechnical 
structures, EN 1997-1. It will be going on until 2009, and after that replace BKR.  
 
Since this study concerns concrete dams founded on rock, a study was performed 
based on the Swedish power company’s guidelines for dam safety, RIDAS. 
Furthermore, regulations and guidelines for concrete dams in Finland, Norway, 
Canada and USA, with conditions similar to Sweden, were studied. Since BKR 
will be replaced by Eurocode in 2009, it was also incorporated in the study. 
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2.4.1 The Swedish guidelines for dam safety, RIDAS 
 
In Sweden, concrete gravity dams and buttress dams are designed according to 
RIDAS, the Swedish power companies’ guidelines for dam safety (Svensk Energi 
2008). They are based on normal practice in the design of dams, and are valid for 
both new and existing ones. No difference is made in the guidelines between 
ordinary concrete gravity dams or buttress dams. The guidelines are not valid for 
arch dams, since only a few of these structures exists in Sweden. Furthermore, 
their structural behaviour is different from conventional gravity or buttress dams.  
 
According to the guidelines, it is recommended that the stability of concrete dams 
is assessed for several different load combinations. These are divided into normal, 
exceptional, and accidental load cases. For these load cases, the dam has to be 
checked against the following: 
 

− Overturning. 
− Sliding. 
− Concrete or foundation strength not exceeded. 

 
Regarding sliding, the Swedish guidelines recommend that the risk is assessed for 
the interface between the dam and the foundation, as well as for weakness planes 
within the foundation.  
 
For dams founded on rock, RIDAS recommend the use of the sliding resistance 
method, see equation 2.9. For dams founded on rock of good quality, the values in 
Table 2.1 can be used as allowable coefficients of friction, where the failure 
value, tanφ=1, corresponds to a friction angle of 45o. 
 
Table 2.1 Recommended coefficients of friction according to RIDAS for dams founded on rock of 
good quality.  

Foundation 
type 

Normal 
load case 

Exceptional 
load case 

Accidental 
load case 

Failure value 
for tan φ 

Rock 0.75 0.90 0.95 1.0 
 
If the dam is founded on rock, which can not be considered to be of good quality, 
the failure value of tanφ should be determined with investigations of the rock 
mass. The failure value obtained from tests should thereafter be reduced with a 
factor of safety, FS, in order to obtain an allowable coefficient of friction. In 
RIDAS, the following values for the factor of safety are recommended. 
 
Table 2.2 Factors of safety according to RIDAS for reduction of the failure value of tanφ. 

Foundation 
type 

Normal 
load case 

Exceptional 
load case 

Accidental 
load case 

Rock 1.35 1.10 1.05 
 
The text in the guidelines does not say anything about the origin of the value for 
the failure coefficient of friction, or what its definition of a good rock mass is. In 
an attempt to answer these questions, common practice in Sweden, before the 
implementation of RIDAS, was studied.  
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The guidelines in RIDAS for concrete dams are in a great extent based upon a 
document issued by Vattenfall (1996). However, this document does not contain 
any supplementary information. 
 
According to Reinius (1973), the coefficient of friction was usually given a 
maximum value of 0.75 for ordinary gravity dams, and a maximum value of 0.9 
to 1.0 for buttress dams founded on a rock mass of good quality. Reinius also 
pointed out that for weak rock masses with horizontal seams etc., one must in 
every single case investigate which value of the coefficient of friction that can be 
allowed. He gave an example of the Possum Kingdom dam in USA. It was 
founded on clay slate with a horizontal stratification. After comprehensive tests, a 
value of tanφ=0.5 were chosen.  
 
Vattenfall (1971) performed a literature study regarding allowable coefficient of 
frictions for concrete dams in Sweden and abroad. In this study, Vattenfall found 
that they were normally around 0.8. If small deformations could be expected, the 
allowable coefficient of friction could be 0.9.  
 
Based on these references, it appears that the coefficient of friction in RIDAS 
probably is based on experience gained under decades of construction. The 
stability assessments were based on investigations of the rock mass. If no 
weakness planes were found, the allowable coefficient of friction, μall=0.75, were 
interpreted as a control against both sliding in the foundation and sliding in the 
interface between dam and foundation. If persistent weakness planes were found, 
the coefficient of friction for this plane was evaluated separately.  
 

2.4.2 Guidelines used in other countries 
 
In order to identify how sliding stability of concrete dams is assessed in other 
countries, guidelines and requirements regarding sliding have been studied in 
Norway, Finland, Canada, and USA. The basic stability requirements are similar 
to those in RIDAS. However, there exist differences between them. These are 
described shortly below. 
 
In other countries such as USA, Canada, and Norway among others, the shear 
friction method with a factor of safety is the method that is recommended to 
assess the safety against sliding. In those guidelines, two lines in the selection of 
factors of safety can be distinguish, which mainly depends on if cohesion is 
accounted for or not.  
 
According to the Federal Energy Regulatory Commission (FERC 2002) in the 
USA, the factors of safety in Table 2.3 are recommended for concrete gravity 
dams. In those guidelines, dams with high or low risks are separated. 
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Table 2.3 Minimum recommended factors of safety against sliding (FERC 2002). 

Load case Dams with high risk 
Factor of safety*) 

Dams with low risk 
Factor of safety*) 

Usual 3.0 2.0 
Unusual 2.0 1.25 
Post earthquake 1.3 >1.0 

*) Factors of safety apply to the calculation of stress and the shear friction factor of safety within 
the structure, at the rock/concrete interface and in the foundation. 
 
Furthermore, FERC (2002) recommend that if cohesion is not accounted for, the 
factors of safety in Table 2.4 can be used. 
 
Table 2.4 Minimum recommended factors of safety if cohesion is not accounted for 
 (FERC 2002). 

Load case Normal 
load case 

Usual 1.5 
Unusual 1.3 
Post earthquake 1.3 

 
According to the Canadian Dam Association, CDA (1999), the recommended 
factors of safety distinguish between if peak or residual strength is considered and 
also if investigations have been performed. Cohesion has also been limited to a 
maximum of 100 kPa. Factors of safety for gravity and buttress dams according to 
CDA guidelines are presented in Table 2.5. 
 
Table 2.5 Sliding and strength factors for gravity and buttress dams (CDA 1999). 

 Usual  
load case 

Unusual load case 
 (post- earthquake) Earthquake Flood 

Peak Sliding Factor  
–No tests 

3.0 2.0 1.3 2.0 

Peak Sliding Factor  
–With tests*) 

2.0 1.5 1.1 1.5 

Residual Sliding Factor  1.5 1.1 1.0 1.3 
Concrete strength factor  3.0 1.5 1.1 2.0 

*) Adequate test data must be available through rigorous investigations carried out by qualified 
professionals. 
 
The Norwegian “Retningslinje for betongdammer” (NVE 2002) enables the use 
of cohesion in the calculations, even though it is normally not included. The 
factors of safety presented in Table 2.6 are recommended. 
 
Table 2.6 Factors of safety against sliding (NVE 2002). 

 Normal 
load case 

Accidental 
load case 

With cohesion 3.0 2.0 
Cohesion verified through tests 2.5 1.5 
No cohesion 1.5 1.1 

 
The Norwegian guidelines also say that a higher degree of safety should be used 
when sliding is assessed in the rock foundation. The factor of safety should be 
evaluated by a geologic engineer on the basis of local conditions and the extent of 
the chosen investigations. 
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The examples above show which factors that affect the recommended factors of 
safety. One important factor is the uncertainties regarding shear strength and how 
the parameters for it have been derived. Other factors are the consequences in 
case of a dam failure and the probability that a certain load case should occur. 
 

2.4.3 Eurocode 
 
The all-embracing document for structures is EN 1990 “Basis for structural 
Design”. This standard, together with EN 1997-1 “Geotechnical design”, are the 
ones that concerns large structures founded on rock. The Eurocode standard, EN 
1990:2002, states that: 
 

− Design for limit states shall be based on the use of structural and load 
models for relevant limit states. 

− The safety requirements should be achieved by the partial factor method. 
− As an alternative, a design directly based on probabilistic methods may be 

used. 
 
According to Eurocode document EN 1997-1:2004, the limit states should be 
analyzed with any of the following methods: 
 

− Use of calculations. 
− Adoption of prescriptive measures. 
− Experimental models and load tests. 
− An observational method. 

 
In EN 1997-1:2004, section 2.4.1 states that the design by calculation shall be in 
accordance with the fundamental requirements of EN 1990:2002. The calculation 
model may consist of any of the following: 
 

− An analytical model. 
− A semi empirical model. 
− A numerical model. 

 
Section 6.5 in EN 1997-1:2004 regards spread foundations in ultimate limit state. 
It addresses bearing resistance, sliding resistance, and structural failure due to 
foundation movement. To verify the sliding resistance, the criterion in equation 
2.24 shall be satisfied. 
 

dp;dd RRH +≤        (2.24) 
 
Where Hd is the design value of the horizontal load, which shall include earth 
pressures acting above the foundation level. Rd is the design value of the sliding 
resistance and Rp;d is the design value of the resisting force caused by passive 
earth pressure on the side of the foundation. Of special interest for foundation on 
rock is that the standard states that the values of Rd and Rp;d should consider the 
relevance of post-peak behaviour. 
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2.5 Summary 
 
The aim with this chapter was to describe the basic principles and current state of 
practice in sliding stability analyses. It focused on the fundamental principles of 
stability analyses and the analytical calculation methods, together with guidelines 
and regulations, used to assess the sliding stability. A summary of these sections 
are presented below. 
 
All stability analyses are based on the criterion that the resistance, R, should be 
equal to, or larger than, the load, S. In general, it is assumed that R and S are 
deterministic values, which are independent of deformation. For foundations on 
rock, it is important to keep this assumption in mind since the resistance for rock 
masses is difficult to predict due to uncertainties. As a consequence, the resistance 
is better described with a probability distribution rather than a deterministic value. 
Furthermore, both the load and the resistance can vary significantly with 
deformation, depending on the stiffness of the foundation. It is important to keep 
this limitation in mind. In some cases, it could be better to relate R and S to 
deformation since it is easier to measure. 
 
Stability analyses are to a large extent a question of finding the right balance 
between the load, the resistance, the uncertainties, and the consequences of a 
failure. To find this balance, an expression for the calculated safety together with 
an acceptance requirement is normally used. None of the methods for calculating 
safety can express the true or real safety. The calculated safety is nominal. As a 
consequence, acceptance requirements are usually determined by a combination 
of experience and back analysis. Even if the true safety probably can not be 
calculated exactly, it is preferable to use methods which reflect the uncertainties 
in the problem. It gives a better understanding of the problem and significant 
parameters can be identified. The probability of failure has the best potential to 
fulfil these demands. 
 
In order to determine the calculated safety, analytical methods are generally used. 
In these methods, the rock mass is assumed to be perfectly plastic. The maximum 
shear strength that can be mobilized is usually defined by the Mohr-Coulomb 
failure criterion. Furthermore, the analytical methods assume that load and 
resistance is constant and independent of deformation. Also, with these methods 
the calculated factor of safety is the average factor of safety for the total potential 
failure plane. 
 
To analyze the sliding stability, one of the following three methods is generally 
used; the sliding resistance method; the shear friction method; and the limit 
equilibrium method. The difference between them is how the factor of safety is 
defined. All of these methods results in different factors of safety, for the same 
problem, if both cohesion and friction exists. Normally, cohesion is not accounted 
for since the uncertainties regarding it are large. If large deformations are 
expected, the residual strength should be considered. When the resistance from a 
passive wedge is included in the total resistance, it may not be added to the 
resistance from the structural wedge, since the peak shear strength for the two 
wedges occur at different deformations. 
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In Sweden, the construction of dams is governed by the Swedish power 
company’s guidelines for dam safety, RIDAS. If RIDAS is compared to 
guidelines and regulations in other countries, it can be seen that for sliding, the 
safety factors are somewhat low (1.35 instead of 1.5). On the other hand, the 
coefficient of friction at failure in RIDAS might be a bit conservative. In RIDAS, 
values on the coefficient of friction are based on experience. No consideration is 
taken for how the values of the parameters for shear strength are determined, 
through rigorous investigations or by experience. Furthermore, the coefficient of 
friction recommended in RIDAS is in general used as a control against sliding in 
both the interface between rock and concrete as well as for joints in the rock 
foundation. Different types of failure modes are not evaluated separately. Also, 
when the factor of safety is recommended in RIDAS, no consideration is taken to 
the difference between high hazard dams and low hazard dams. 
 
Due to the limitations with the current guidelines, suggestions for new future 
guidelines were proposed by Gustafsson et al. (2008). These guidelines were also 
tested for the concrete dam at Laxede hydropower station in the northern part of 
Sweden (Gustafsson et al. 2009). The main difference to the current guidelines is 
that several potential failure modes must be analysed and that cohesion are 
allowed for low hazard dams. 
 
Today, the safety against sliding failure for concrete dams founded on rock in 
general is verified with the factor of safety. However, in 2009 Eurocode will 
replace BKR. Therefore, the natural way for the development of RIDAS would be 
in a direction towards Eurocode, which means towards using limit states analyses 
with partial factors, or a design directly based on probabilistic methods. 
Regarding concrete dams, the latter is recommended before the former, mainly 
because each concrete dam and its foundation in many ways is a unique structure. 
In order to assign fixed partial factors, they would have to be large to cover all 
possible design situations. This may lead to a design which is too conservative.  
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3 LITERATURE STUDY: SHEAR STRENGTH OF UNFILLED AND 
ROUGH JOINTS 

3.1 Introduction 
 
When the safety against sliding failure is analysed for concrete dams founded on 
rock where horizontal joints are present; a key parameter is the shear strength of 
the joints. However, the shear strength is affected by several parameters, which 
makes it uncertain to predict. Parameters such as the normal stress, the uniaxial 
compressive strength of the joint surfaces, the surface roughness, weathering of 
the surfaces and possible infilling material affect the shear strength. However, the 
influence on the shear strength from these parameters is normally studied by 
performing small scale laboratory shear tests.  
 
Unfortunately, the shear strength for rough unfilled joints could also be affected 
by scale; see for example Bandis (1980) and Yoshinaka et al. (1993). It is 
believed that the surface roughness, together with the compressive strength of the 
joint surface, may have an impact on the scale effect (Barton and Bandis 1982). 
This scale effect can not be studied in laboratory only. Instead, it must be studied 
by performing large scale tests in situ. Even these large scale tests have 
limitations since they are usually performed on blocks smaller than 1 by 1 m. For 
example, ISRM (1981) suggested that in situ shear test should have a dimension 
of 0.7 by 0.7 m.  
 
Other parameters which may also affect the uncertainty of the shear strength are 
few samples and the variation in strength between different samples. However, 
this effect was not studied here. 
 
To increase the understanding on how the peak shear strength for rough and 
unfilled joints can be predicted at laboratory and at full size scales, a literature 
study was performed. The study contains a review of available shear strength 
failure criteria for unfilled and rough joints, together with available expressions to 
account for scale.  
 

3.2 Failure criteria 
 
Before the 1960’s, it was customary to describe the shear strength of joints with 
the linear Mohr-Coulomb failure criterion. The criterion is based on the work by 
Coulomb 1776 and Mohr 1882, and is described in most soil and rock mechanics 
textbooks. In its modern form the criterion can be expressed as: 
 

φστ tannf ⋅′+= c        (3.1) 
 
where τf is the shear stress at failure along the theoretical failure plane, c is the 
apparent cohesion of the plane, σ´n is the effective normal stress acting on the 
failure plane and φ is the friction angle of the failure plane. 
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In the sixties it was recognized that the failure envelope was curved. One of the 
most important contributions was made by Patton (1966). He derived 
experimentally from “saw-tooth” specimens a bi-linear approximation of the 
curved failure envelope. Under low effective normal stresses the expression had 
the form: 
 

)tan( ibnf +⋅′= φστ        (3.2) 
 
where φb is the basic friction angle of a smooth but rough surface and i is the 
angle of the “saw-tooth” with respect to the direction of the applied shear stress. 
For the primary portion of the failure envelope, Patton observed that sliding 
occurred prior to shearing through the intact tooth. Over a certain level of normal 
stress, the effect of the asperities or “saw-tooth” disappeared due to failure 
through the asperities by shearing. When this happened, equation 3.2 was 
changed to: 
 

)tan( rnxf c φστ ⋅′+=        (3.3) 
 
where φr is the residual shearing resistance of an initially intact material and cx is 
the cohesion when the teeth are sheared of at their base. The principle of the 
failure envelope is shown in Figure 3.1. 
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Figure 3.1 Bilinear failure envelope proposed by Patton (1966). 
 
The region between the primary and secondary failure mode, Patton (1966) called 
the region of intermediate failure mode. In this region, the angle of the failure 
envelope changes from φb+i to φr. Patton (1966) described the discrepancy against 
the bilinear criterion in this region by saying that “real failure envelopes for rock 
would not reflect simple change in the mode of failure but changes in the 
intensities of different modes of failures occurring simultaneously”. 
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Figure 3.2 Inclination of asperities with respect to scale (From Barton 1973 after Patton 1966).  
 
Patton also performed 247 field investigations of sandstone slopes and slopes of 
carbonate rocks. He classified the slopes into stable, unstable and failed slopes. In 
his field investigations, he gave particular attention to the inclination of the 
asperities for the joint on those slopes classified as unstable. However, he 
observed that the correction for the inclination of the asperities, i, was more 
difficult than anticipated. The inclination of i for small scale asperities, which he 
denoted second order irregularities (measured over a few centimetres), in some 
cases resulted in a friction angle for the joint which was negative. To account for 
this discrepancy he used another method, where he measured i for larger 
asperities, which he denoted first order irregularities (measured over a few 
decimetres). With this method he observed that measured i was usually 
considerably less than those obtained from the second order irregularities, se 
Figure 3.2. Based on the observation of instable slopes, Patton concluded that: 
“for sandstone the effect of correcting for i was to lower the median 3o, and for 
carbonate rocks the effect of correcting for i was to lower the median 5o”. To 
verify that the correction for i was acceptable he compared the friction angle 
corrected for i from the slopes with laboratory shear test performed on 
macroscopically smooth but microscopically irregular wet surfaces. Values 
corrected for asperity inclination was 22o to 31o for sandstone and 25o to 39o for 
carbonate rock respectively. The results from laboratory shear test showed values 
for sandstone from 24.5o to 33o and for carbonate rock from 32.5o to 36o. Patton 
wrote that these changes in the median value were much less than anticipated 
when the study began. 
 
A similar study was also performed by McMahon (1985), where the friction angle 
from eight rock slides was back-calculated. He concluded that the effective 
friction angle at failure could be estimated as the sum of the mean residual 
friction angle and the mean of the relatively large scale roughness angles. Best 
agreement with back-calculated friction angles were obtained if a dilation angle 
based on large scale asperities with a base length greater than 2% of the potential 
failure surface were used, together with measured residual friction angle from 
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laboratory tests. Measured large scale dilation angles varied in the different cases 
between one to nine degrees. The size of the rock slides ranged from 20 by 10 m 
up to 200 by 600 meters. Low dilation angles were mainly obtained in soft rock 
(σci<20 MPa), while high dilation angles mainly were obtained in hard rocks 
(σci>20 MPa). 
 
According to Ladanyi and Archambault (1970), Pattons bilinear model is “strictly 
valid for shearing along a regularly intended rock surface in which, at failure, the 
teeth have the same geometry and the degree of interlocking as at the beginning 
of loading in shear.” They further stated that this rarely is the case in reality since 
a small displacement is necessary in order to mobilize friction along contact areas. 
Also, the stress distribution over the contact surfaces is non-uniform which results 
in that some of the teeth are usually partially broken before the maximum strength 
is reached. Furthermore, for irregular rock surfaces such as natural joints planes, 
both the average inclination angle, i, of the asperities at contact and the cohesion 
intercept are not easy to define. 
 
In an attempt to solve these problems, Ladanyi and Archambault (1970) proposed 
a failure criterion where the total shear strength force, S, was expresses according 
to the following equation. 
 

( ) ( ) ss aSaSSSS ⋅+−⋅++= 4321 1      (3.4) 
 
S1 is a component due to external work done in dilation defined as: 
 

1
dy
dx

S N N υ= ⋅ = ⋅        (3.5) 

 
In the equation above, N is the normal force on the surface, dy and dx is the 
increment in normal and shear displacement respectively, and υ  is the rate of 
dilation at failure.  
 
S2 is a component due to additional internal work in friction due to dilation, and is 
expressed as: 
 

2 ftanS S υ φ= ⋅ ⋅        (3.6) 
 
where υ  is the rate of dilation at failure. It should be observed that i=arctan (υ ) 
represents a fictitious angle for irregular joint surfaces. For a regular saw toothed 
joint surface, i corresponds to the inclination of the teeth. φf were defined as the 
statistical average value of friction angle that is assessed when sliding occurs 
along the irregularities of different orientations.  
 
S3 is the component of friction for a flat, but rough, surface expressed according 
to the following equation. 
 

3 utanS N φ= ⋅         (3.7) 
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Where φu were defined as the frictional resistance along the contact surfaces of 
the teeth. The shear area ratio for shearing through the asperities, as, was defined 
as: 
 

A
A

a s
s =         (3.8) 

 
where As is the portion of the asperities sheared off, and A is the total possible 
shear area. The contribution to the shear force from shearing through the 
asperities, S4, was given by: 
 

4 i itanS A c N φ= ⋅ + ⋅        (3.9) 
 
where ci is the cohesion for the intact rock material and φi is the friction angle for 
the intact rock material. By substituting for S1 to S4 in equation 3.4, and 
accounting for the degree of interlocking, η, the shear strength was expressed as: 
 

s u s i i

s f

(1 )( tan ) ( tan )
1 (1 ) tan

a a c
a

σ υ φ σ φ ητ
υ φ

− + + ⋅ + ⋅
=

− − ⋅ ⋅
   (3.10) 

 
where the degree of interlocking, η, is defined as: 
 

L
x

Δ
Δ

−= 1η         (3.11) 

 
where Δx is the shear displacement and ΔL is the length of the asperities in the 
shear direction. How the interlocking is defined, together with results from the 
bilinear model and the proposed model, can be seen in Figure 3.3. 
 
In equation 3.10, both υ  and as varies depending on the level of normal stress. 
Two extremes can occur. In the first case, when the normal stress is low, i.e. 
σ→0, the parameters as →0 and υ→tan(i). In the other case, when the normal 
stress is high and approaches the transition pressure, as →1 and υ→0. However, 
determination of as and υ  are difficult to perform. A schematic presentation of 
basic assumptions, and how as and υ  were assumed to change with normal stress, 
can be seen in Figure 3.4. 
 
Within the following interval of normal pressure, 0<σn<σT, Ladanyi and 
Archambult proposed the following empirical expressions as a first approximation 
for the parameters as and υ . 
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Figure 3.3 a) Definition of the degree of interlocking, η. b) Results according to the bilinear 
model. c) Results according to the proposed model (From Ladanyi and Archambault 1970). 
 

 
Figure 3.4 a) Definition of the dilation rate and the shear area ratio. b) Expected failure 
envelopes for irregular rock surfaces, and rock mass, respectively. c) Anticipated variation of 
dilation rate and shear area ratio with normal pressure. (From Ladanyi and Archambault 1970) 



Chapter 3 Literature study: Shear strength of unfilled and rough joints 

 35

 
Where k1 and k2 are empirical constants, having values of about 3/2 and 4 
respectively. However, Ladanyi and Archambault (1970) point out that these 
values were derived from a limited number of shear tests and are uncertain. In his 
work, no consideration to scale was taken. 
 
A modified version of Ladanyi and Archambaults criterion (1970) was proposed 
by Saeb (1990). By studying the stress dilatancy theory of sand, two remarks were 
made on the original criterion. First, since no relocation of the rock particles occur 
he suggests that φu should be used instead of φf. Secondly, in the term S2 he 
suggests that the total shear force, S, should be replaced by the total force required 
for sliding over the asperities, Sf. The result was a more simple form of the 
original criterion. 
 
Barton (1973) and Barton and Choubey (1977) presented an empirical failure 
criterion with a curved failure envelope, which could be used to estimate the peak 
shear strength of joints. The criterion was based on extensive test results, and it 
included effects from the roughness of the joint and the compressive strength of 
the joint surface in relation to the applied effective normal stress. The criterion 
was expressed according to equation 3.14. 
 

⎥
⎦

⎤
⎢
⎣

⎡
+

′
⋅′= b

n
10nf )(logtan φ

σ
στ JCSJRC      (3.14) 

 
Where τf is the peak shear strength, σ´n is the effective normal stress, JRC is the 
joint roughness coefficient, JCS is the joint wall compressive strength and φb is 
the basic friction angle measured from a saw-cut sample. If the joint was 
weathered or altered, Barton and Choubey (1977) suggested that the residual 
friction angle should be used instead of the basic friction angle. 
 
According to Barton (1973), the JCS is equal to the unconfined compressive 
strength of the intact rock, σci, if the discontinuity is unweathered. For weathered 
joint surfaces, the JCS should be reduced. The JRC represents a roughness scale 
which varies from 0 to 20, where 0 represents a completely smooth and plane 
surface, and 20 represents a very rough and undulating surface. In order to 
estimate the joint roughness coefficient, JRC, Barton and Choubey (1977) 
suggested two methods. The first method used predefined roughness profiles to 
determine JRC. However, the method is subjective and a correct profile can be 
difficult to predict from a three dimensional surface. Therefore, they suggested 
performing tilt test and back calculate the correct JRC.  
 
A modification of Barton´s empirical JRC-JCS model was suggested by Zhao 
(1997 a, b) to account for degree of matedness. According to Zhao, the JRC-JCS 
model can overestimate the shear strength if the joint is unmated. He therefore 
suggests to incorporate a parameter denoted JMC (Joint Matching Coefficient), 
which ranged from zero to one representing the area of the joint surface in 
contact, i.e. zero for a maximal unmated joint and one for a perfectly mated joint.  
 



Shear strength of unfilled and rough rock joints in sliding stability analyses of concrete dams  

 36 

Based on results from Pratt et al. (1972), which showed that the compressive 
strength of intact rock was scale dependent, Barton (1973) suggested that the JCS 
could be scale dependent. 
 
The scale effect was further examined by Barton and Choubey (1977). In order to 
examine the scale effect they performed a tilt test on a 40 by 45 cm joint area. 
This block was thereafter sawn in 18 samples measuring 4.9 by 9.8 cm. These 
tests showed that measured difference between the large sample and the small 
samples could not be explained by a reduction of JCS alone. They therefore 
concluded that there must be a significant scale effect on JRC. They meant that 
the reason for the scale effect on JCS and JRC are related, at least qualitatively, 
since they appear to be in proportion to the joint length, up to some critical length. 
The explanation for this scale effect was that “on a larger scale there are larger 
individual contact areas with correspondingly lower JCS values than those of the 
small steep asperities. The larger contact areas are themselves less steeply 
inclined in relation to the mean plane of the joint than the small steep asperities 
and therefore give correspondingly reduced JRC values”.  
 
Barton and Choubey (1977) also suggested that the scale effect might be reduced 
faster in a rock mass where the joint spacing and block size is small, since such a 
rock mass may not be stiff enough to mobilize the large scale asperities. As a 
consequence, they suggested performing tilt tests on blocks with sizes 
representative for the rock mass in order to account for a possible scale effect.  
 
A systematic experimental study of scale effects for rough joints was also 
performed by Bandis et al. (1981), where they concluded that the peak shear 
strength is a strongly scale dependent property. They also observed that the 
shearing characteristics were altered significantly with increased scale. Peak shear 
strength could be taken equal to approximately 1% of the joint length and the 
behaviour changed from brittle to plastic with increased scale. Furthermore, they 
concluded that the average base length of critical asperities was about 4% of the 
joint length, and that maximum scale effects were associated with rough 
undulating joints, while minimum with almost smooth planar joints. They also 
performed tests on jointed models with different block sizes which indicated that 
block size may constitute a potential scale effect size limit. As a consequence, 
they recommend that estimates of JRC at larger scales should be performed on 
naturally occurring block sizes. If this is not possible, they proposed the following 
equation to estimate JRC at larger scales: 
 

o
naturalblock naturalblock

o
laboratory laboratory

JRC a
JRC a

=       (3.15) 

 
where a  is the mean inclination angle for the asperities based on a 2% step-size 
of the specimen length.  
 
Based on their previous data, Barton and Bandis (1982) developed the following 
equations to account for the scale effect: 
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where the subscripts (0) and (n) correspond to laboratory and in situ scale 
respectively. The length, Ln, is the length of the rock blocks along the joint being 
sheared, and L0 is the length of the sample size. 
 
The experimental results from Bandis et al. (1981), which showed that the block 
size affected the peak shear strength and mode of failure for jointed rock masses, 
was supported by Bhasin and Høeg (1997). They performed two dimensional 
numerical modelling of jointed rock masses with different block sizes with UDEC 
and obtained similar results as Bandis et al. (1981). 
 
The argument of using the average block size as a definition of the in situ scale 
assumes that the blocks can rotate and arrange themselves in contact with the 
underlying joint surface. For a shallow joint under a concrete dam, this 
assumption is not obvious. 
 
The blocks can to some degree be expected to be locked by the overlying 
structure. The rock mass between the dam and the shallow horizontal joint might 
therefore behave as a rigid body, which means that in situ scale becomes equal to 
the dimension of the overlying structure. In that case, JRC and JCS might be 
needed to be adjusted to the size of the overlying structure. However, the 
equations proposed by Barton and Bandis (1982) can not be used at these scales, 
especially for higher values of JRCo .This limitation is illustrated in Figure 3.5, 
where it can be seen that the contribution to the friction angle from roughness 
decreases with rougher surfaces for large values on Ln.  
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Figure 3.5 Estimated contributions to the friction angle from surface roughness with different 
JRCo and at different scales using equations proposed by Barton and Bandis (1982). 
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It is also worth to comment that Bandis (1980) used casted joint replicas for his 
shear tests. In these replicas, he used a geometric scale factor to account for an 
increased scale. This means that material properties of the sample replicas were 
made weaker to scale them up from laboratory scale to in situ scale. An effect 
from this methodology, which also was pointed out by Bandis (1980), is that it 
may lead to an exaggerated surface geometry in relation to the length of the joint.  
 
In order to investigate the scale effects found by Bandis et al. (1981), a testing 
program was performed and analysed by Hencher et al. (1993). It followed the 
same method as outlined by Bandis. The conclusions, among others, were that the 
basic friction angle had an extremely wide scatter and that the clearly defined 
scale effects observed by Bandis et al. (1981) were not confirmed. Furthermore, it 
was not confirmed that an asperity failure component is scale dependent. As a 
whole, they mean that “The model material employed by Bandis and used in this 
study has severe limitations for accurately and consistently simulating shear 
behaviour of most rocks”. 
 
Maksimovic (1992 and 1996) proposed a hyperbolic function to describe the 
angle of shearing resistance for rock joints. With the hyperbolic function, the peak 
shear strength was expressed as: 
 

( )( )f n b n ntan / 1 / pτ σ φ φ σ= + Δ +      (3.18) 
 
where φb is the basic friction angle, Δφ is the joint roughness angle, or the angle of 
maximum dilatancy for an undamaged rugged surface, and pn is the median angle 
pressure which is equal to the normal stress at which the contribution is equal to 
one half of Δφ. Maksimovic (1996) meant that the proposed hyperbolic function 
is simple and can successively describe the non-linear failure envelope without 
involving logarithmic or power type expressions. The advantage is, according to 
Maksimovic (1996), that it gives a good approximation over all stress levels. 
 
Papaliangas et al. (1995) proposed a criterion to estimate the peak shear strength 
for unfilled and rough joints. The criterion consisted of one friction component 
and one dilation component according to the equation below.  
 

)tan( mnf ψφστ +⋅=        (3.19) 
 
The friction component, φm, was suggested by Papaliangas et al. (1995) to be an 
inherent property of the intact rock material and independent of normal stress. 
The values of φm therefore, according to Papaliangas et al. (1995), vary between 
different types of rock and are independent of scale.  
 
The criterion was built on the assumption that deformation in the contact points 
occur at high pressures usually referred to as “cataclastic flow”. In order to derive 
values of φm, the authors used the state of stress where a transition occurs from 
brittle to ductile behaviour for intact rock material. A stress state which is usually 
called the “brittle ductile transition stress”, denoted σT. Using Fairhurst (1964) 
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parabolic criterion for intact rock, the shear stress, τ, for a normal stress, σ, was 
given by: 
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where Co is the uniaxial compressive strength and n is the ratio between 
compressive and tensile strength. By taking the transition pressure equal to the 
uniaxial compressive strength, the coefficient of friction became: 
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= 111
mμ       (3.21) 

 
where n is the ratio between the uniaxial compressive strength, σci, and the tensile 
strength, σti, for the intact rock. The principle is shown in Figure 3.6. 
 

 

Figure 3.6: Determination of friction angle for intact rock material, φm (From Papaliangas et. al 
1995). 
 
However, the assumption that the transition stress is equal to the uniaxial 
compressive strength is only an approximation according to the authors. Strong 
rocks, such as granite, may have values five times higher than the uniaxial 
compressive strength. Examples of typical values for φm and σT for some types of 
soft and hard rocks are presented in Table 3.1. 
 
Table 3.1: Typical values for friction angle, φm, and transition stress, σT, (From CEATI 1998 
based on Papaliangas 1996).  

Type of 
rock 

Estimated  

mφ  (o) 
Transition stress 

Tσ  (MPa) 
Ratio 
σT/ σci 

Dolomite 41,5 234 1,3 
Limestone 41,6 138 1,4 
Marble 42,9 64 0,8 
Granite 32,0 1243 5,2 
Sandstone 34,2 186 3,1 
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The dilation component, ψ, consists of a maximal dilation angle at low normal 
stresses, ψ0. With increasing normal stresses the dilation component, ψ, reduces 
logarithmically. This continues up to a certain state of normal stress at which 
dilation becomes negligible, σnT. Based on the principles of contact theory they 
proposed the following expression for the estimation of the dilation angle: 
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where σn0 is a lower limit for normal stresses, usually assumed to be 1 kPa. 
 
In the expression above, it should be emphasized that σnT is different than σT, 
since the true contact area affects at which normal stress dilation becomes 
negligible. Based on his testing, Papaliangas obtained results which suggested 
that σnT occurred when the contact area was about 10% of the nominal area of the 
sample. As a result, he proposed the following equation to estimate sigma σnT. 
 

10
ci

nT
σ

σ =         (3.23) 

 
According to Papaliangas, the above expression was only a rough estimation, but 
on the other hand, possible errors were of minor importance due to the 
logarithmic nature of equation 3.22. 
 
Regarding the shear strength at in situ scale Papaliangas (1996) was of the 
opinion that any variation in the peak shear strength was due to dilation caused by 
roughness. Therefore, any variation in peak shear strength at different scales was 
due to variations in dilation. Using extrapolation of measured dilation at different 
scales, he proposed that a critical length, Lcr, existed where the dilation became 
zero, see Figure 3.7. Therefore, he concluded that for in situ scale dilation was 
negligible and the shear strength was purely due to the frictional component, φm.  
 

 
Figure 3.7 Scale free block size according to Papaliangas (1996) from three different 
experimental data sets. 
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From fractal theory, Kulatilake (1995) proposed a new shear strength criterion for 
unfilled and rough joints on the form: 
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where φ represents the basic friction angle and I considers the non-stationary part 
of the roughness approximated as the average inclination of the roughness. σj is 
the compressive strength of the joint surface. a, c and d are empirical constants 
which according to Kulatilake et al. (1995) should be determined by regression 
analysis of data from shear tests. SRP denotes the stationary roughness parameter 
and is based on two fractal parameters for quantification of surface roughness. 
Different techniques were proposed to describe SRP which resulted in four 
different forms of SRP in the criterion presented in equation 3.24. By 
determination of fractal parameters in different direction, Kulatilake et al. (1995) 
estimated the shear strength in different directions for their samples. They also 
concluded that some of the parameters are scale dependent and could be used to 
model the scale effect.  
 
The criterion by Kulatilake et al. (1995) was later modified by Kulatilake et al. 
(1999) to account for the effect from shearing through the asperities. The 
modification was done since “at very low effective normal stresses, the effect of 
shearing through the asperities plays a negligible role compared with the dilation 
on peak shear strength. However, with increasing normal stress, in addition to 
dilation, shearing through the asperities may contribute to the peak shear 
strength.” Furthermore, effect from a non-stationary roughness was modelled in 
more detail. 
 
Fractal theory were also used by Borri-Brunetto et al. (1999 and 2004) to suggest 
possible explanations for changes in peak shear strength due to changes in normal 
stress and scale.  
 
Based on extensive experimental results Grasselli (2001) proposed a failure 
criterion for rough unfilled joints that considers the anisotropy of the shear 
strength. It was based on detailed surface measurements of the joints, using a 
optical measurement system called ATS (Advanced Topometric System). The 
result from the measurements was a point cloud which was used to reconstruct the 
joints surface by triangulation. He suggested that it is only the triangles of the 
reconstructed surface facing the shear direction that provide shear resistance. By 
calculating the sum of the areas of these triangles the result is a total potential 
contact area ratio, denoted Ac. The contribution from each triangle projection was 
described by a parameter called apparent dip angle, denoted θ* and described in 
Figure 3.8. 
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Figure 3.8 Geometrical identification of the apparent dip angle θ*, as a function of shear direction 
(From Grasselli 2006). 
 
He suggested that the shearing mechanism could be simplified by assuming that 
only the zones of the surfaces facing the shear direction, and steeper than a 
threshold inclination, θ*

cr, were involved in the shearing. Zones inclined exactly 
θ*

cr will be just in contact, while zones inclined more than θ*
cr will be deformed, 

sheared or crushed depending on the applied normal load.  
 
Based on curve fitting and regression analysis he proposed an empirical equation 
to describe the relation between these two parameters. 
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Where Ac is the sum of the total potential contact area ratio, and Ao is the 
maximum possible contact area ratio which, according to Grasselli, usually is 
around 50% of the total potential area for fresh mated discontinuities. θ*

max is the 
maximum apparent dip angle and θ* is the apparent dip angle as described in 
Figure 3.8, and C is a “roughness” parameter.  
 
Based on his experimental results, Grasselli (2001) proposed the following 
empirical expression to predict the peak shear strength. 
 

( ) ( )grnp +⋅′⋅= 1tan φστ       (3.26) 
 
Where σn is the applied average normal stress, φ´r is the residual friction angle, 
and g is a term which account for the contribution to the peak shear strength from 
surface morphology given by: 
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In equation 3.27, θ*

max is the maximum apparent dip angle with respect to the 
shearing direction, Ao is the maximum potential contact area, C is the roughness 
parameter, and σt is the tensile strength of the intact rock material.  
 
The residual friction angle, φ´r, could be expressed as (Grasselli 2001): 
 

βφφ +=′ br        (3.28) 
 
where β is the contribution from roughness to the residual friction angle and is 
calculated with the following equation. 
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The parameter α is the angle of schistosity planes in the rock with respect to the 
normal of the joint. If no schistosity planes are present α is set to zero. 
 
In his work, no attempt was made to investigate the influence of scale. 
Furthermore, Grasselli pointed out that the criterion only has validity in the range 
of the samples tested in the laboratory, i.e. σn/ σc=0.01-0.4 and σc/ σt=5-46, and 
that further studies are needed to investigate its applicability to in situ conditions.  
 
Seidel and Haberfield (2002) developed a model for joints in soft rock (i.e. 
uniaxial compressive strength of about 3.5 MPa) based on several analytical 
models which accounted for asperity sliding, shearing through asperities and 
elastic distribution of stresses. The analytical models were incorporated in a 
computer program and shear stress at different shear displacements was predicted. 
Good agreement was obtained against observed behaviour in shear tests of two 
dimensional roughness profiles.  
 

3.3 Summary  
 
A number of failure criteria for rough unfilled joints have been proposed by 
different authors. In their construction they are fundamentally built on the same 
principle. The total friction angle is assumed to consist of two parts; one part 
which is constant and only depend of rock type, and another part which depends 
on surface roughness and is dependent of parameters such as normal stress, 
strength of the joint surfaces and most likely scale. However, these criteria are 
mainly derived based on tests in laboratory scale.  
 
Barton and Bandis (1982) suggested that reductions of the friction angle from 
laboratory scale to in situ scale should be performed based on the average block 
size in the rock mass. But this assumption imply that the rock mass has a 
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sufficiently low stiffness to mobilize the active asperities at block scale. This is an 
assumption which is not obvious for a shallow horizontal joint under a concrete 
dam. If the rock mass is sufficiently stiff, the rock mass between the dam and the 
joint might work as a single block, and in situ scale thereby means the dimensions 
of the overlying structure. Another suggested method is to use a fixed percentage 
of the sample length to find the asperity which governs the dilatation angle 
(Bandis et al. 1981, Patton 1966, MacMahon 1985). A third proposed alternative 
is to not account from the effect of roughness since it is suggested that it becomes 
negligible at a sample length of one to one and a half meter (Papaliangas 1996).  
 
The major drawback with these suggested methods are that they are mainly based 
on empirical grounds. Which alternative is correct, and under which conditions 
they can be used, are not clear. Fractal theory, as suggested by for example 
Kulatilake et al. (1995 and 1999) and Borri-Brunetto et al. (1999 and 2004), may 
be used to find possible explanations for the scale effect. This means that there 
exists a need for a method based on a conceptual and more detailed understanding 
of the mechanisms that governs the shear strength at different scales. 
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4 A CONCEPTUAL MODEL FOR PEAK SHEAR STRENGTH OF 
UNFILLED AND ROUGH JOINTS  

4.1 Introduction 
 
As shown in the previous chapter, it is clear that several parameters affect the 
shear strength of unfilled and rough joints in a rock mass. Parameters such as 
normal stress, uniaxial compressive strength of the joint wall surface, roughness 
of the wall and scale influence the peak shear strength. However, different shear 
strength criterion uses different explanations for some of the mechanisms of the 
shearing process, and proposes different methods to describe it mathematically, 
when the peak shear strength should be estimated. 
 
In order to reduce some of the uncertainties regarding peak shear strength for full 
sized joints, an attempt is made in this chapter to develop a conceptual model 
which describes the basic mechanisms behind the peak shear strength for an 
unfilled rough joint of different scales. 
 
At the end of the chapter, the conceptual model is used in a verification analysis. 
Based on the results from this analysis, conclusions about the peak shear strength 
for full sized joints are presented. 
 

4.2 Fundamental mechanics of friction 
 
The sliding resistance between two contacting bodies at their interfaces is a 
subject that has been extensively studied during the latest decades. The following 
section in the subject is mainly based on the review in the subject performed by 
Lambe and Whitman (1969) and the literature study by Papaliangas (1996). 
 
Two basic laws are used to describe frictional behaviour. These laws were first 
stated by Leonardo da Vinci in the 1400s. They were largely forgotten until they 
were rediscovered by the French engineer Amontons (1699). They are often 
called Amontons laws and states that: 
 

• The shear resistance between two bodies is proportional to the normal 
force between the bodies.  

 
• The shear resistance between two bodies is independent of the dimensions 

of the two bodies. 
 
The generally accepted theory for the friction process is called the adhesion 
theory and was first stated by Terzaghi (1925). Bowden and Tabor (1950 and 
1964) showed that it could explain the frictional behaviour for a wide range of 
materials. 
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The adhesion theory of friction states that on a microscopic level, all surfaces, 
even smooth ones, are rough. Contact points will only be developed where the 
asperities from the two opposing surfaces touch each other. The true area of 
contact will only be a small part of the total nominal contacting area of the two 
surfaces. As a consequence, the normal stresses at these contact points can be so 
high that the local plastic yield strength of the rock material at the asperity scale is 
reached. The true contact area, Ac, can be defined as: 
 

c
u

NA
q

=         (4.1) 

 
where N is the normal load and qu is the stress required to obtain plastic flow at 
the contact points. Since qu is constant, the true contact area will increase 
proportional to the normal stress. At these contact points, the two opposing 
surfaces will be welded together at “junctions”, creating adhesive bonds. The 
shear resistance, T, is provided by the adhesive strength of these junctions, si, and 
can therefore be expressed as: 
 

i c,i cT s A s A= Σ ⋅ = ⋅        (4.2) 
 
where Ac,i is the contact area for contact point i, see Figure 4.1.  
 

 
Figure 4.1 Microscopic view of two bodies in contact (From Lambe and Whitman 1969). 
 
Combining equations 4.1 and 4.2 leads to the following expression: 
 

u

sT N
q

= ⋅         (4.3) 

 
The quotient s/qu is often called the familiar term coefficient of friction, μ, or 
from a geometrical interpretation of the relation between normal and tangential 
(shear) force components of the system, the tangent of a friction angle, φ. 
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When s and qu are constant, the shear strength will be proportional only to the 
normal load.  



Chapter 4 – A conceptual model for peak shear strength of unfilled and rough joints 

 47

When the yield strength, qu, is not reached at the contact points, the asperities 
forming these contact points will deform elastically. Archard (1957 and 1974) 
shows that for a surface with asperities of a uniform distribution, Ac increases as 
N2/3. On the other hand, for a surface with asperities of different sizes following a 
Gaussian distribution, Ac increases as N44/45.  
 
Therefore, in both plastic and complex elastic deformation cases of the asperities 
at contact, the true contact area will be proportional to the normal load 
(Papaliangas 1996).  
 
Another approach has been suggested by Greenwood and Williamson (1966). 
They developed an analytical model for contact mechanics of one nominally 
planar rough surface with its asperity height following a Gaussian distribution and 
one smooth surface. The model was based on the assumptions that the summits of 
the asperities are spherical and have the same radius and are sufficiently apart 
from each other to deform independently. Using their model they showed that 
exact proportionality between contact area and normal load will exist 
independently of mode of deformation (elastic or plastic). Instead, the model 
showed that the proportionality between contact area and load lies in the 
statistical distribution of the asperity heights of the surface roughness. 
 
A further development of this model was presented by Greenwood and Tripp 
(1971). In this paper, an analytical model for the contact of two nominally flat 
rough surfaces was derived. They showed that results from previous models, i.e. 
Greenwood and Williamson (1966), were unaffected.  
 

 
Figure 4.2 Variation of contact area with normal stress (From Logan and Teufel 1986). 
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The concept of adhesion were developed with observations of mainly engineered 
planar metal surfaces whose roughness is both stationary and regular compared 
with rough surfaces of rock joints. However, the model by Greenwood and Tripp 
(1971) has been used with success to estimate different joints properties, see for 
example in Swahn (1983) and Swahn and Zongqi (1985).  
 
If the contact stress is sufficiently high to induce plastic flow of asperities under 
shearing of rock joints, the proportionality can be estimated by comparing 
measured contact area of the tested sample surfaces against the applied normal 
stress. Logan and Teufel (1986) measured the contact areas at different normal 
stresses during shearing for sandstone and limestone surfaces, see Figure 4.2. 
Calculated normal stresses at the contact points were around 125 MPa for 
limestone and 2200 MPa for the sandstone. These values are close to the uniaxial 
compressive strength for calcite and quartz, both minerals that form a part of 
limestone respectively sandstone. It can also be observed that the contact area 
increases linearly with increasing normal stress and that the contact stress is 
approximately constant, which is in line with the adhesion theory. 
 

 
Figure 4.3 The variation of relative contact area with stress normalized to indentation hardness, 
H (From Stesky and Hannan 1987). 
 
A similar type of experiment was also performed by Stesky and Hannan (1987) 
who measured the contact areas under different normal loadings for marble, 
alabaster, and quartzite surfaces, see Figure 4.3. They also observed increasing 
contact areas with increasing normal stress. They concluded that surface asperities 
in marble and alabaster were weakened by cataclastic flow, which lead to the 
increase of contact areas with stress. Even the quartzite undergoes some 
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cataclastic deformation and a significant growth of contact area with stress. The 
fact that the increase of contact area became non-linear at stresses around 1-2% of 
the indentation hardness for marble and alabaster is not significant according to 
the authors due to the uncertainties in the hardness values and the appropriateness 
of using hardness as a measure of relative asperity strength.  
 
In summary, the experimental evidence points to the fact that plastic flow do 
occur at the contact points of the asperities, and that this gives rise to adhesive 
bonds in the contact points as proposed by Terzaghi 1925. It therefore seems 
likely that the contact area can be reasonably approximated as the load acting over 
the surface divided by the yield strength of the material. 
 
It is most likely that the adhesion theory can explain the constant part of the 
friction angle in all failure criteria, often denoted the basic friction angle, φb. The 
fact that adhesion is responsible for friction is something that could feel like a 
paradox. However, it can explain Amontons laws and the theory is realistic. 
Based on the origin of the friction force, it could also be discussed whether or not 
it is appropriate to express it with a friction angle since it mainly is material 
constants that are responsible to it. Probably, the use of a friction angle dates from 
the days of Leonardo da Vinci, when the friction force was determined with 
inclined planes. 
 
It has been observed by both Johnson et al. (1971) and Fuller and Tabor (1975), 
who investigated the adhesion at the contact points, that adhesion diminishes with 
increasing microscopic roughness. This should be kept in mind when the basic 
friction angle should be determined. Barton and Choubey (1977) suggest that the 
basic friction angle should be determined by shearing two saw cut surfaces 
against each other. It is possible that the sawing creates macroscopically planar 
surfaces and thereby alters the basic friction angle. Tests performed by Hencher 
and Richards (1989), and Hencher et al. (1993) showed practical difficulties in the 
determination of the basic friction angle. Their results exhibited a large variation 
between 12o and 32o. Influencing factors were thought to be the roughness of the 
surfaces, the properties of the saw blade, powder from the rock and other 
materials that have been gathered on the surfaces. 
 
Based on the previous text, the following statements can be made regarding the 
fundamental frictional behaviour: 
 

• The contact area is proportional to the normal load. 
 

• The true contact area can be approximated as the load acting over the 
surface divided by the yield strength of the material. 

 
• The basic friction angle originates from the adhesion theory of a 

microscopic rough but macroscopic smooth surface. 
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4.3 Description of surface roughness 
 
Surface roughness has been described by a number of different approaches and 
parameters. The most commonly used parameter in engineering practice is the 
joint roughness coefficient, JRC, defined by Barton (1973) and Barton & 
Choubey (1977). Other methods which have been proposed to measure 
roughness, especially at larger scales, are for example a compass clinometer with 
variable sizes of base plates; see ISRM suggested methods (1981) and remote-
controlled laser scanning (Feng et al. 2001). 
 
Another approach which has been used to quantify surface roughness is by using 
statistical parameters from analysis of two dimensional profiles. To measure the 
magnitude of roughness, the root mean square (RMS) and the centre line average 
(CLA) is commonly used, see for example (Thomas 1982). By using the RMS as 
the basic parameter, Myers (1962) proposed for 2D profiles three additional 
parameters to describe surface roughness, the root mean square of the first 
derivate of the profile (Z2), the root mean square of the second derivate of the 
profile (Z3), and (Z4) defined as the percentage excess of distance measured along 
the profile where the slope is positive over the distance where the slope is 
negative. Other examples of statistical parameters used to quantify surface 
roughness are auto-correlation function, spectral density function, structure 
function (SF), roughness profile index (Rp), and micro average angle (At) 
(Papaliangas 1996).  
 
Tse and Cruden (1979) investigated the correlation between JRC values given by 
Barton and Choubey (1977) in their predefined profiles with different statistical 
parameters. They found good correlation between JRC and the parameters Z2. The 
parameter Z2, which is a measure of the average inclination over a certain 
sampling distance Δx, is defined as: 
 

( ) ( )
1/2

2
2 1

1

1
( 1)

n

i i
i

Z z z
n x +

=

⎡ ⎤= −⎣ ⎦− Δ ∑      (4.5) 

 
where n is the number of discrete measurements of the asperity height, zi and zi+1 
are the asperity height of two adjacent sampling points separated by the sampling 
distance Δx.  
 
Based on their work, Tse and Cruden (1979) concludes that there exist physical 
reasons for expecting Z2 to characterize the frictional behaviour of rock surfaces 
since arctan(Z2) should be proportional to an i angle of an appropriate order 
according to Patton´s (1966) definition. It should be noted that Tse and Cruden 
used a constant sampling distance of 1.27 mm in their analyses. The meaning of 
the parameter Z2 and the length of the sampling distance, Δx, will be discussed 
further in Chapter 4.5, where the relevance of asperity slope angle with respect to 
dilational behaviour are discussed. 
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The awareness of scale effects, and the fact that natural rock joints are rough at all 
scales, led to the idea that surface roughness can be described with fractal models. 
The fractal dimension, D, can in general be defined with the following relation 
(Mandelbrot 1967). 
 

1
DN

r
=         (4.6) 

 
Where N is the number of square boxes of linear size r needed to cover the 
profile. Using equation 4.6, the fractal dimension, D, is: 
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In other words, the fractal dimension D describes how the total size of the set 
depends on the sampling size. For a line, the fractal dimension is 1.0, and for a 
plane it is 2.0, equal to their respective Euclidean dimension. However, for a 
profile of a rough surface, the fractal dimension varies between the Euclidean 
dimension of a line and a plane, see Figure 4.4. 

 
Figure 4.4 A unit segment can be divided into four equal parts, each scaled by a factor r=1/4 
which gives D=1, a unit square can be subdivided into four equal parts, scaled by a factor r=1/2 
which gives D=2. Four equal parts of a von Koch curve are scaled by a factor r=1/3 which gives 
a fractal dimension of D=1,26 that is intermediate between the dimension of a line and the 
dimension of a square (From Maliverno 1995). 
 
Two different ways to represent the surface roughness has been proposed, self 
similar and self-affine fractal models. In short, the difference between them is that 
for self-similar fractal models the geometric statistical moments remain constant 
to all scales, while a self-affine fractal models only remains the same statistically 
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if they are scaled differently in different directions (Mandelbrot 1983). In general, 
self-affine fractal models are considered to be more applicable to describe surface 
roughness of joints compared to self-similar models, see for example Mandelbrot 
(1983); Brown and Scholz (1985); Kulatilake et al. (1995) and (1997); Lanaro 
(2001); and Fardin (2003).  
 
However, it should be noticed that a fracture surface probably could not be 
considered fractal at all scales. For example, Brown and Scholz (1985) concluded 
that surfaces may be considered fractal only over limited scale ranges above the 
grain size. The size of the grains varies depending on type of rock and can range 
from a few hundreds to thousand of a millimetre (very fined grained) up to a few 
centimetres (very coarse grained), see for example in the book Engineering 
Geology and Rock Engineering (NBG 2000). For larger scales, measurements by 
Fardin (2003) indicate that the self-affine fractal model might only be applicable 
up to about 3 m, where a stationary threshold is reached for the roughness.  
 
For a self-affine fractal, there exists a power law relation between the standard 
deviation of the asperity height, S(w) and the spanning length of the profile, w 
(Maliverno 1990): 
 
( ) HS w Aw=         (4.8) 

 
where H is the Hurst exponent and A is the amplitude parameter. When w=1, 
S(w)=A and is a measure on the roughness amplitude. The Hurst exponent, H, 
describes how roughness changes with scale. H and the fractal dimension D is 
related by a relation H=E-D, where E is the Euclidean dimension (3 for a surface 
and 2 for a profile).  
 
The fact that surface roughness can be correlated for self-affine fractal models 
points to the fact that there exists a scaling relation between the asperity height, 
hasp, and the base length of different sized asperities, Lasp, which can be expressed 
with a power function on the form: 
 

H
asp asph a L= ⋅         (4.9) 

 
where a is an amplitude constant based on the asperity base length and therefore 
is related to the amplitude parameter, A. H is the Hurst exponent. If H=1, then the 
height of the asperity increases proportional to the length of the asperities. 
However, natural rock surfaces usually have a value of H lower than one; see for 
example Lanaro (2001). This means that the increase of the asperity height is 
lower than the increase of asperity length. In other words, the inclination of the 
asperities decreases exponentially with asperity base length, since the dilation 
angle for a geometric idealized asperity could be defined as: 
 

asp

asp

2
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L
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       (4.10) 
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This effect can be seen in the paper by Sfondrini and Sterlacchini (1996). They 
determined the statistical parameter Z2 (mean inclination angle of asperity) at 
different sampling sizes, see Figure 4.5. 

 
Figure 4.5 Measured positive inclination angles based on the parameter Z2 at different scanning 
steps (From Sfondrini and Sterlacchini 1996). 
 
This also means that different scales of asperities exist, with different heights, on 
the same sample. By superposition in the order of the measurement scales, it may 
be possible to idealize the surface roughness. The basic principle is shown in 
Figure 4.6.  

 
Figure 4.6 Idealized description of surface roughness. 
 
In Figure 4.6, it has been assumed that the theoretical maximum asperity base 
length that could exist on the sample is equal to the sample length. In reality, they 
could be smaller as observed by for example Lanaro (2001). However, for the 
purpose of this discussion, the assumption that a maximum base length of the 
asperity that could exist on a sample is equal to the sample length is sufficient. It 
could therefore be assumed that: 
 

• The change of height for surface asperities, hasp, with respect to asperity 
base length, Lasp, for natural rock joints can be expressed with a power 
function based on a self-affine fractal model. 

 
• Therefore, surface roughness could be idealized by superposition of a 

large number of asperities at different scales. 
 

• The grain size could be assumed to constitute a lower limit of the fractal 
scale. 

 
• At larger scales, an upper limit of the fractal scale might exist due to a 

stationary threshold of the roughness. 
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4.4 Contact area during shear 
 
For a smooth planar surface, the adhesion theory states that the contact area is 
proportional to the applied normal stress and that the contact area can be defined 
as the load acting over the surface divided by the yield strength of the material. It 
could be anticipated that the same mechanism is valid for a very rough surface, 
i.e. a macroscopic rough surface. The difference is that during shear, the contact 
points will be located on the sides of the asperities facing the shear direction.   
 
It has been observed that the contact areas for a macroscopic rough surface for 
fresh and mated joints are located in the steepest zones facing the shear direction 
(Grasselli and Egger 2000; Kimura and Esaki 1995), as previously described in 
Chapter 3. Based on regression analyses of scanning data from joint surfaces, 
Grasselli (2001) proposed the following empirical relation to express the contact 
area ratio at different asperity inclinations for a mated joint. Grasselli called this 
parameter the potential contact area ratio, in this work denoted Ac,p. 
 

* *
max

c,p *
max

C

oA A θ θ
θ

⎡ ⎤−
= ⎢ ⎥

⎣ ⎦
       (4.11) 

 
Where Ao is the maximum possible contact area ratio, which usually is around 
50% of the total sample area for fresh and mated joints. θ*

max is the maximum 
apparent dip angle and θ* is the apparent dip angle. The apparent dip angle is 
defined as the inclination of the asperity against the shear direction. From now on 
in this work, θ* is called the measured dip angle against the shear direction. C is a 
“roughness” parameter which governs the concavity of the curve. An example 
from one of Grasselli´s samples which shows how the potential contact area 
changes with the measured dip angle is presented in Figure 4.7. 
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Figure 4.7 Example of potential contact area for different measured dip angles (Grasselli 2001). 
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Based on the potential contact area ratio, Ac,p, the potential contact area is given 
by the product of the potential contact area ratio and the area of the sample. 
 
The potential contact area, Ac,p, is determined by dividing the sample into a large 
number of triangles or squares at a predefined resolution. Thereafter, the 
cumulative sum of all areas with different inclinations is calculated. The 
calculation starts with the sum of the potential contact area for the maximum 
apparent dip angle. Next, areas with lower inclinations are successively added 
until all areas in the sample facing the shear direction are included.  
 
This technique, where the potential contact area ratio is determined based on 
scanning data has one significant limitation. As previously shown in Figure 4.6, 
the surface roughness consists of asperities at multiple scales. This multiple scale 
behaviour is not captured by using a fixed resolution of the scanned joint surface.  
 
However, it could be assumed, as suggested by Brown and Sholz (1985), that the 
grain size of the intact rock constitutes a lower limit of the fractal scale. If a 
scanning resolution was chosen at grain size scale, it could be considered to 
represent this lower limit of the fractal scale. Under these assumptions, it would 
be possible to use the adhesion theory, combined with the concept of a potential 
contact area ratio, in order to estimate the dilation angle for perfectly mated joints.   
 
Still, this does not explain the mechanism behind the scale effect. In order to 
study this effect, it must be further discussed how the contact points change with 
scale. 
 
First of all, the adhesion theory states that the contact area increases 
proportionally to the sample size for a given normal stress. At the same time, it 
will remain the same independently to the sample size. This can be shown with 
the following equations: 
 

n
c

u u

ANA
q q

σ ′⋅
= =        (4.12) 

 
where A is the nominal area of the sample and σ´n is the effective normal stress. 
The effective normal stress is defined as: 
 

n n uσ σ′ = −         (4.13) 
 
where σn is the total normal stress and u is the pore pressure. If equation 4.12 is 
rearranged it becomes:  
 

c n

u

A
A q

σ ′
=         (4.14) 

 
Since the ratio between the true contact area and the sample area is dependent 
only on effective normal stress and the yield stress of the material, but 
independent of scale, the following expression is valid: 
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c,gc,n

n g

AA
A A

=         (4.15) 

 
where subscript (n) and (g) stands for full joint size and grain size respectively. 
The true contact area could also be expressed as: 
 

2
c c,av aspA n A n L= ⋅ = ⋅        (4.16) 

 
where n is the number of contact points and Ac,av is the average area of the contact 
points. Lasp is the average length of the contacting asperities if they are assumed to 
be shaped quadratic on the joint wall surface. Combining equation 4.15 and 4.16 
gives: 
 

2 2
n asp,n g asp,g

2 2
n g

n L n L
L L
⋅ ⋅

=        (4.17) 

 
where L is the length of the sample. Equation 4.17 indicates that the change in the 
number of contact points will govern how the length or area of the contacting 
asperities change with increased scale under a constant normal stress. This is in 
line with the conclusions in Yoshinaka et al. (1993). They concluded that the 
scale effect occurs as a result of changes of the contact points. 
 
How the contact area and the number of contact points change with sample size 
was studied by Bandis (1980). He concluded that an increased scale resulted in 
larger number of contact points, which is in line with the assumption above. In his 
observations, the size of the contact points did not increase proportionally to the 
increase of the sample size. Instead a mixture of increased number of contact 
points and an increased length or area of contacting asperities was observed with 
increased scale. His results also indicate that the increase of the number of contact 
points and the length or area of the contacting asperities could be dependent of 
roughness. These results indicate that the asperity base length or area at contact 
for full sized joints, Lasp,n, could be expressed as: 
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L
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       (4.18) 

 
where k is an empirical constant. If the results by Bandis (1980) are analysed, 
values on k with respect to the JRC according to Figure 4.8 were obtained. The 
results indicate that the value of k increases with an increased roughness.  
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Figure 4.8 Values on k with respect to the JRC based on results from Bandis (1980). 
 
It could be further discussed which mechanisms that control the value of k. In 
Figure 4.9, an example of potential contact areas for different apparent dip angles 
are presented. In this figure, it can be seen that potential contact areas with higher 
inclinations always are located in the same area of the sample as the potential 
contact areas with lower inclinations. This is most likely an effect from different 
orders of asperities that superimpose each other.  
 

 
Figure 4.9 Figure showing potential contact area (b) Surface dipping against shear direction (c) 
Contact area with θ*>27o (d) Contact area with θ*>18o (From Grasselli 2001). 
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Figure 4.10 Basic mechanisms behind the change of the potential contact area with superimposed 
order of asperities. Notice how the potential contact area decreases while the inclination of the 
steepest asperities increases. 
 
When scale is increased, the potential contact area ratio is affected in two ways by 
additional orders of asperities that are included into the sample: (1) it reduces the 
potential contact area ratio for that order of asperities and (2) it increases the 
inclination angle of the asperities for that order. The basic mechanism for changes 
in the potential contact area ratio with superimposed asperities has been illustrated 
in Figure 4.10. 
 
It is unclear how this affects the potential contact area. Measurements by Fardin 
(2003) indicated that the potential contact area decreased with an increased scale. 
However, this observation has not been verified by the author. Instead, according 
to the author’s experience, the curve which describes the potential contact area 
appears to remain almost unchanged with an increased scale if the resolution is 
fixed. The exception is that the tail of the curve that represents the steepest 
asperities becomes shorter with an increased scale. This would imply that joints 
mated down to grain size scale, under a constant normal stress, would have a 
dilation angle that is independent of scale. In other words, the number of contact 
points increases proportionally to the area of the sample. This suggests that the 
factor k=0 for perfectly mated joints. How the curve which describes the potential 
contact area changes with scale is further analysed in Chapter 5. 
 
This further suggests that observations from mated joints down to grain size scale 
could not explain the scale effect observed by for example Bandis et al. (1981) 
and Yoshinaka et al. (1993). If a full reduction of the asperity inclination should 
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occur according to the scaling relation that exist between asperity length and 
asperity height, then it must lead to k=1. This only takes place when the number 
of contact points remains unchanged with scale. This requirement is fulfilled 
when the contact points are associated with the maximum asperities that could 
exist on the sample. In this work, for the sake of simplicity, the maximum asperity 
base length was assumed to be equal to the sample length. 
 

Perfectly mated joint

Unmated joint

asp, maxδasp,maxL asp,max asp,max0,5 Lδ ≈ ⋅
 

Figure 4.11 Illustration of the reduction of the number of contact points between a perfectly mated 
joint and an unmated joint. 
 
During shearing, the number of contact points could become associated with the 
maximum number of asperities that could exist on the sample in two ways. In the 
first case, the normal stress is so high that all other asperities that are smaller than 
the largest ones are crushed. In this case, the dilation originates from the 
inclination of the remaining maximal sized asperities. For the other case, when 
the normal stress is low, dilation could originate from the largest asperities in 
active contact areas if the upper part of the sample undergoes a relative 
displacement equal to about half of the length of the maximum asperity base 
length. The principle is illustrated in Figure 4.11. 
 
This suggests that the full scale effect occurs indirectly as a result of a maximal 
unmatedness between the upper and lower part of the sample. When this happens, 
k=1 and the number of contact points remains constant with scale. 
 
Combining equation 4.17 and 4.18, the quotient between the numbers of contact 
points could be expressed as: 
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        (4.19) 

 
In equation 4.19, Lg are assumed to represent the grain size scale and Ln the full 
sized joint scale. Figures 4.12 and 4.13 show how the number of contact points 
and the contacting asperity length changes with scale when k=0 (no scale effect) 
and when k=1 (full scale effect). 
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Figure 4.12 Changes in the number of contact points with scale when k=0 and k=1. 
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Figure 4.13 Changes in length of the contacting asperities with scale when k=0 and k=1. 
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Based on the analysis performed above the following assumptions can be made: 
 

• For a macroscopic rough mated surface, the shear deformation leads to a 
concentration of the contact area to the steepest zones facing the shear 
direction. 

 
• If the normal stress is constant, the contact area is independent of the 

sample size. Therefore, any changes in the dilation angle occur due to 
changes of the number and size of the contact points. 

 
• The number of contact points for perfectly mated joints increase 

proportionally to the area of the sample (k=0). 
 

• For a maximal unmated joint, the number of contact points are constant at 
an increased scale (k=1). 

 

4.5 Frictional component due to surface roughness 
 
In the previous section about the fundamental mechanics of friction, friction for a 
microscopic rough but macroscopic smooth surface was discussed. However, for 
a macroscopic rough surface an additional contribution to the friction angle is 
added. Patton (1966) introduced the concept of a dilation component, i, and 
suggested that the total friction angle could be expressed as: 
 

p b iφ φ= +         (4.20) 
 
where φp is the total friction angle at peak shear strength and φb is the basic 
friction angle. 
 
Ladanyi and Archambult (1970), Barton (1973), and Bandis et al. (1981) added a 
third component called asperity failure component, sometimes denoted sn.  
 
It is the dilational component and the asperity failure component that originates 
from roughness. The magnitude of i and sn depends on several factors, such as the 
normal stress, strength of the joint wall surface, the degree of roughness, and also 
scale. However, what all these factors have in common is that they together 
govern how, and at which order of the asperities, that the asperities will fail. The 
failure mode of the asperities is a key factor to understand the conceptual 
mechanism of the peak shear strength. 
 
How asperities fail, and in turn affect the shear strength, concern a complex 
process with several different types of failures. For example, Patton (1966) 
observed that in the primary portion of the failure envelope, sliding occurred prior 
to shearing through the intact rock, while the secondary portion of the envelope 
were obtained from tests where the teeth were sheared off at their base without 
sliding. Furthermore, he observed anomalous reductions in shear strength in some 
specimens at low normal loads. He wrote that “This was most common in 
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specimens that failed by internal shearing preceding sliding, especially on 
specimens with teeth which were rectangular or inclined at an angle of 55o. The 
reductions in shear strength appeared to be the result of either the introduction of 
tensile stresses in the teeth due to a possible eccentricity of loading or to a change 
in the failure mode that varied according to the normal load in the intact 
material. Either explanation indicated that a change in the mode of failure was 
related to a change in the slope of the failure envelope.” 
 
Results published by Fishman (1990) also suggest that asperities could fail 
through tensile failure rather than compressive failure. In the same manner, 
Grasselli (2001) found indications that individual asperities broke by tensile 
failure instead of compressive failure, since the failure planes tended to be rough 
and intact fragments sheared from the surface were observed.  
 
This means that failure of asperities can occur by any of the following types: 
sliding failure, shear or crushing failure, and tensile failure. However, it seems 
more likely that tensile failure of the asperities would occur at steeper angles of 
the asperity inclination i, while sliding mainly occur at smaller angles of the 
asperity inclination, i.  
 
Between the different failure modes, it is important to distinguish between the 
mechanical behaviour behind them. Sliding over inclined asperities requires a 
displacement increment along the contact interface between asperities at contact 
in order to shear off the adhesive bonds that exist at the contact points. On the 
other hand, prior to the shear or tensile failure of interlocked asperities, the 
displacement increment along the contact interface between asperities in contact 
decreases. This means that no sliding occurs along the side of the asperities 
simultaneously as interlocking. Therefore, it appears unreasonably to add an 
asperity failure component, sn, to a dilation angle, i, simultaneously, at least for 
the same asperity. 
 
In order to investigate how a single asperity can fail at different angles of the 
asperity inclination, i, a calculation of a two dimensional idealized asperity was 
performed. The idealized asperity is shown in Figure 4.14.  
 

Lasp

hasp

N

T

i

2
ci asp

1
2

Lσ≈ ⋅

O

 
Figure 4.14 Figure of a two dimensional idealized asperity used in the calculation with a base 
area equal to Lasp

2, height, h, and inclination, i.  
 



Chapter 4 – A conceptual model for peak shear strength of unfilled and rough joints 

 63

In the calculations it is first assumed that the normal pressure on the contact 
points is near the uniaxial compressive strength of the intact rock, i.e. the contact 
area is equal to the ratio between the normal stress and the uniaxial compressive 
strength of the joint wall surface such as stated by the adhesion theory. Secondly, 
when the shear load starts to be applied, it is assumed that only the side of the 
asperity facing the shear direction is loaded. The width of the asperity is assumed 
fixed, while the angle of i varies between 0 to 90o. 
 
The resistance for sliding failure, T, along the side of the asperity facing the shear 
direction is calculated using the primary portion of Patton’s criteria. 
 

btan( )T N iφ= ⋅ +        (4.21) 
 
where N is the normal load. It is based on the adhesion theory and equals: 
 

2
asp ci

1
2

N L σ= ⋅ ⋅        (4.22) 

 
since it only is the side of the asperity facing the shear direction that will be in 
contact. For a shear failure through the intact rock at the base of the idealized 
asperity, the shear resistance, T, is calculated with Mohr-Coulombs failure 
criterion. 
 

2
i asp itan( )T c L N φ= ⋅ + ⋅       (4.23) 

 
For a tensile failure to occur in the intact rock at the base of the asperity, it is 
assumed that the average tensile stress at the asperity base needs to exceed the 
tensile strength of the intact rock. Moment equilibrium at point O in Figure 4.14 
gives: 
 

asp asp2
asp ti asp

3
2 4 2

h L
T N L Lσ⋅ − ⋅ ⋅ = ⋅ ⋅      (4.24) 

 
where: 
 

( )asp
asp tan

2
L

h i= ⋅        (4.25) 

 
Combining equation 2.24 and 2.25 gives:  
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2
ci ti asp3 4
2 tan

L
T
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σ σ⋅ + ⋅

=
⋅

      (4.26) 

 
In the calculations, typical values for intact granite were assumed. The uniaxial 
compressive strength, σci, is assumed to be 150 MPa, the tensile strength, σti, to be 
10 MPa, cohesion, ci, to be 20 MPa, and friction angle, φi, to be 60o. Furthermore, 
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a basic friction angle, φb, of 30o has been used, and the base width, Lasp, has been 
set to ten millimetres. The results from this calculation can be seen in Figure 4.15. 
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Figure 4.15 Resistances for different failure modes for an idealized asperity where the inclination 
angle of the asperity varies (sliding failure, equation 4.21; shear failure, equation 4.23; and 
tensile failure equation 4.26). 
 
The results from the calculations agree with the observations made by Patton 
(1966). For low values of the asperity inclination, it is sliding failure that probably 
governs the shear strength. However, around inclination angles above 30o, 
shearing through, or crushing, of the asperities starts to take place. As the 
inclination angle further increases, tensile stresses start to appear at the base of the 
asperity. In the figures above, tensile failure occurs at an inclination angle slightly 
above 70o.  
 
A limitation with the used model is that the base width is fixed, while the angle i 
increase. This means that the height, hasp, becomes infinite when the inclination 
angle, i, approaches 90o. An effect from this can be seen in the results in Figure 
4.15, where the strength for tensile failure appears to become zero for values of i 
close to 90o. However, this is only a hypothetical state and will not occur in a real 
discontinuity since these high asperities will fail quickly and the state of failure 
will pass over to shearing of or sliding over the asperities. 
 
Based on the results in Figure 4.15, a total friction angle for different values of i 
can be calculated for the idealized asperity. The results are shown in Figure 4.16. 
It should be observed that the limits between different modes of failure shown in 
Figure 4.16 are most likely not fixed values. At which inclination angles different 
modes of failure occur depends to a great extent on the geometry and strength of 
the intact rock for every single asperity.  
 



Chapter 4 – A conceptual model for peak shear strength of unfilled and rough joints 

 65

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70 80 90 100

Inclination of asperity, i (o)

To
ta

l f
ric

tio
n 

an
gl

e 
(o )

 
Figure 4.16 Total friction angle for an idealized asperity with a varying angle of inclination i.  
 
This means for example that the horizontal line in Figure 4.16 that represents 
shear failure of the asperity can both decrease or increase depending on the 
strength of individual asperities.  
 
Based on the analysis performed above the following assumptions can be made: 
 

• For shearing under a constant normal load, tensile failure and shearing 
through the asperities mainly occur for samples at small scales. 

 
• For lower inclinations of the asperities, sliding on the asperities is the 

dominating failure mode. 
 

• This transition between the different failure modes appears to occur 
around inclinations of the asperities around 35o for hard rocks. However, 
this transition angle depends on the cohesion and internal friction angle of 
the intact material. 

 
• For joints of full size, the peak friction angle can be expressed with the 

equation proposed by Patton (1966). In other words φp=φb+i 
 

4.6 Conceptual model 
 
Based on the literature study and the analyses performed in this chapter, a number 
of statements and assumptions were made regarding the frictional behaviour and 
some of the parameters that affect the peak shear strength. From these, it is 
possible to set up a conceptual model for the peak shear strength at different 
scales. 
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The peak friction angle for a rough surface can be divided into two parts; one part 
which originate from a smooth but microscopic rough surface defined as the basic 
friction angle, φb; and one part which originate from the macroscopic roughness 
defined as the dilation angle, i. 
 
For the smooth but microscopic rough surface, contact points will develop where 
asperities touch each other. At these contact points, the stress may become so high 
that the material yields plastically. Therefore, the true area of contact could be 
expressed as the quotient between the normal load and the yielding stress of the 
material. At these contact points, the surfaces are welded together at junctions 
creating adhesive bonds. The shear resistance is provided by the adhesive strength 
of these junctions. It implies that the friction could be expressed as the quotient 
between the sum of the adhesive strength for these junctions and the yield stress 
of the surface. This mechanism explains the constant part of the friction angle in 
all failure criteria, φb. 
 
The other part of the friction angle that originates from a macroscopic rough 
surface is more complex. It has been shown that roughness of joint surfaces can 
be described using self-affine fractal models in the relevant range of scales. This 
implies that there exists a scaling relation between asperity heights and asperity 
lengths of different orders, where the increase of the asperity heights is lower than 
the asperity lengths. Furthermore, it implies that it may be possible to idealize the 
surface roughness as a large number of superimposed asperities at different 
scales. The range of scale for this fractal self-affine model could be assumed to 
start at the grain size of the intact rock up to a possible stationary threshold of the 
roughness. 
 
How these asperities fail during shear will govern the contribution from 
roughness to the peak friction angle. In principle, three different failure modes are 
possible for the asperities: (1) sliding over the asperities, (2) shearing or crushing 
of the asperities, and (3) tensile failure. However, shearing through and tensile 
failure mainly occur for high inclinations of the asperities. For lower inclinations 
of the asperities, sliding appears to be the dominating failure mode. For hard 
rocks, the transition between these two modes of failure is approximately around 
35o. This means that an asperity failure component, if present, only exists for 
small scale samples under low normal stresses. For full sized joints, sliding over 
the asperities will be the dominating failure mode and the average angle of the 
contacting asperities will be equal to the dilation angle, i. As a consequence, the 
peak friction angle for a full sized joint could be expressed as the sum of the basic 
friction angle and the dilation angle. 
 
The mechanism behind the dilation angle could be explained as follows. When 
shearing is initiated for a perfectly mated, unfilled and rough joint, subjected to a 
constant normal load, the asperities will first be deformed elastically. At the same 
time, the load at the initial contact points starts to increase and quickly reaches the 
yield strength of the material. At this point, the smallest asperities facing the shear 
direction will be crushed since the potential contact area for these asperities are 
too small to carry the total load. This process will successively continue until a 
critical number of asperities are reached when the potential contact area becomes 
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equal to the true contact area. At this state, the measured dip angle of the 
contacting asperities becomes equal to the dilation angle of the joint surface.  
 
Changes in the dilation angle for joint of different sizes are due to changes in the 
size of the contact points. The adhesion theory states that for a constant normal 
stress, under the assumption that the plastic yield stress of the asperities remains 
constant; the ratio between contact area and sample area should remain constant 
for joints of different sizes. At the same time, when a scale effect is observed, it 
can also be seen that the size of the contact points increases with an increased 
scale, see for example Bandis (1980). For a perfectly mated joint, the number of 
contact points under low normal stresses could be expected to increase 
proportionally to the increase of the area of the sample. When this occurs, no 
scale effect is observed. On the other hand, if the joint is maximally unmated, the 
number of contact points could be expected to remain constant at an increased 
scale. For these types of joints, a full scale effect could be observed. 
 
From the conceptual understandings presented above, five basic mechanisms can 
be identified to derive a failure criterion for the peak shear strength for full sized 
joints. These five mechanisms are shortly described below and presented in 
equations 4.27 to 4.31. 
 
For a full sized joint, the peak shear strength, τp, for a rough and unfilled joint can 
be described with the following equation: 
 

p n b ntan( )iτ σ φ′= ⋅ +        (4.27) 
 
where φb is the basic friction angle and in is the dilation angle for a full sized joint. 
σ´n is the effective normal stress.  
 
The adhesion theory states that the true contact area ratio, Ac,r, can be expressed as 
the quotient between effective normal stress, σ´n, and yielding stress of the joint 
surface, σci: 
 

n
c,r

ci

A σ
σ
′

=         (4.28) 

 
The potential contact area ratio, Ac,p, for rough joint surfaces could be expressed 
by an empirical formulation as suggested by Grasselli (2001): 
 

* *
max

c,p *
max

C

oA A θ θ
θ

⎡ ⎤−
= ⎢ ⎥

⎣ ⎦
       (4.29) 

 
where Ao is the maximum possible contact area ratio against the shear direction. 
θ*max is the maximum measured dip angle measured on the sample and θ* is the 
measured dip angle defined as the inclination of the asperities against the shear 
direction. C is a roughness parameter which governs the concavity of the curve. 
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Surface roughness for joints can be described using self-affine fractal models. 
Therefore, the relation between asperity heights, hasp, and base lengths of different 
asperity orders, Lasp, can be expressed with a power function on the form: 
 

H
asp asph a L= ⋅         (4.30) 

 
where a is the amplitude constant and H is the Hurst exponent, both based on the 
base lengths of different asperity orders.  
 
Under a constant normal stress, since the true area of contact is constant, the 
change in the number of contact points with an increased size of the joints will 
govern how the area of the average contacting asperities will change. If the 
contact points are assumed to be shaped quadratic on the joint wall surface, this 
change could be expressed as: 
 

, ,

k

n
asp n asp g

g

LL L
L

⎛ ⎞
= ⋅⎜ ⎟⎜ ⎟

⎝ ⎠
       (4.31) 

 
where L is the length of the sample and Lasp is the base length of the asperity. The 
subscript (g) corresponds to grain size and (n) to full sized joints. k is an empirical 
constant which range between zero and one, depending on the degree of 
matedness.  
 
Using the five equations above, an equation has been derived to show how the 
dilation angle changes with roughness, the strength of the surface, the normal 
stress and increased scale. 
 
When equilibrium is reached with the potential contact area equal to the true 
contact area, the measured dip angle, θ*, becomes equal to the inclination of the 
asperities where sliding occurs, i. In other words, the apparent dip angle, θ*, 
becomes equal to the dilation angle, i. Combining equation 4.28 and 4.29, the 
dilation angle, i, for a perfectly mated joint could be expressed as: 
 

log log

* *
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n
o

ci
A
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σ
σ

θ θ

′
−

= − ⋅       (4.32) 
 
The dilation angle is by geometry calculated as: 
 

arctan
0,5

asp
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h
i

L
⎛ ⎞

= ⎜ ⎟⎜ ⎟⋅⎝ ⎠
       (4.33) 

 
By using the scaling relation expressed in equation 4.30, together with equation 
4.32 and 4.33, the length of the contacting asperities at grain size could also be 
expressed as: 
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   (4.34) 

 
Combining equation 4.30, 4.31, 4.33 and 4.34, the equation which express the 
dilation angle for full sized joints becomes: 
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 (4.35) 

 
Equation 4.35 could be simplified into: 
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     (4.36) 

 
The equation above suggests that the conceptual behaviour of the dilation angle 
could be summarized according to Figure 4.17.  
 

 
Figure 4.17 Conceptual behaviour of the dilation angle at different scales and matedness. 
 
An example on the behaviour of the dilation angle for an unfilled rough joint was 
analysed by using equation 4.36. In this example, the dilation angle for a perfectly 
mated joint was assumed to be 35o under a constant normal stress and the grain 
size was assumed to be 1 mm. The Hurst exponent, H, was assumed to be 0.8. 
The example shows how the dilation angle changes at different scales and 
different degrees of matedness. The results are presented in Figure 4.18 and 4.19.  
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Figure 4.18 Example of changes in the dilation angle at different degrees of matedness up to a 
scale of 250 mm. 
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Figure 4.19 Example of changes in the dilation angle at different degrees of matedness up to a 
scale of 10 000 mm (No stationary threshold for the roughness has been considered). 
 
This conceptual model is based on several statements and assumptions, which are 
simplified descriptions of the reality. One limitation is that no scale dependence is 
used for the yielding strength of the joint surface. It could be expected that active 
asperities at laboratory scale, only at millimetres scale, probably has yield 
strength higher than the uniaxial compressive strength of the intact material.  
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It should also be emphasized that the conceptual model is developed under the 
assumption that the normal stress is monotonically increasing. Changes in the 
dilation angle due to cyclic stress changes are not considered. 
 
It should also be observed that the calculated length in equation 4.34 is derived 
from a regression curve based on the average inclination of all asperities present 
on the sample at different sampling sizes. However, only a small percentage of 
the sample is involved in the shearing. If the average inclination of all asperities 
over the whole sample is used to determine the constants, the amplitude constant, 
a, of contacting asperities will be underestimated. This is of no importance if the 
purpose is only to estimate in, since a does not effect it. However, if it is of 
interest to calculate the true length of the contacting asperities, it is necessary to 
base the regression analysis with the constants a and H derived from the asperities 
in contact. This could be achieved if the area under the tail of the Gaussian 
distribution curve are used which corresponds to the true contact area according 
to the adhesion theory. 
 

4.7 Verification analysis 
 
In order to determine if the conceptual model realistically captures the 
fundamental principles of the shearing mechanism at peak shear strength, 
calculations were performed to investigate it. These calculations consist of two 
parts. The first part investigates if the adhesion theory combined with 
measurements of surface roughness at grain scale can be used to calculate the 
dilation angle for a perfectly mated joint. The other part investigates if the Hurst 
exponent, H, together with the constant of matedness, k, could be used to describe 
changes in the dilation angle for joint planes of different sizes. 
 

4.7.1 Grain size scale 
 
Grasselli (2001) performed a large number of shear tests on fresh tensile induced 
joints in the scale 140 by 140 mm. The fact that they were fresh and tensile 
induced means that the constant of matedness was assumed to be 0. Furthermore, 
Grasselli (2001) determined the parameters for the potential contact area ratio 
with a resolution equal to 0.3 mm. It was in these calculations assumed that this 
resolution represent a grain scale for the intact rock of the joint surface. By using 
equation 4.32 was the dilation angle calculated and compared with measured 
dilation angles from the shear tests. Data from Grasselli (2001), together with 
calculated dilation angles are presented in Table 4.1 and 4.2. The results from the 
comparison between calculated and measured dilations angles are presented in 
Figure 4.20. 
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Figure 4.20 Calculated dilation with the conceptual model at laboratory scale compared to 
measured contribution to the friction angle from roughness in Grasselli´s (2001) samples. 
 
If the results in Figure 4.20 are studied, three things can be observed. First, it can 
be seen that the calculated dilation agree reasonably well with measured 
contribution from roughness. Sliding over the asperities appears to be the 
dominating failure mechanisms for asperities with an inclination up to 35o. At 
higher calculated values for the dilation, they appear to deviate from the measured 
contribution from roughness. This is in line with expected behaviour from the 
calculations presented in Figure 4.16, where sliding over the asperities occurs up 
to inclinations of about 35o. However, only a few of Grasselli´s (2001) tests have 
a calculated dilation angle which exceeds 35o and no firm conclusions can be 
drawn.  
 
Secondly, it can be seen that the Gneiss samples clearly deviate from the expected 
behaviour. The cause for this deviation might be due to an anisotropic uniaxial 
compressive strength for the gneiss due to foliation. For example, Grasselli (2001) 
introduced the parameter α is his criterion, which was the angle of schistosity 
planes in the rock with respect to the normal of the joint. 
 
The third thing that can be observed in Figure 4.20 is that the calculated dilation 
angle usually is a little smaller than observed contribution from roughness, 
especially for the samples with a lower uniaxial compressive strength. The reason 
for this could be due to a low estimated basic friction angle, φb.  
 
Another possible explanation is that the strength of the asperities in reality is 
higher than the uniaxial compressive strength. The samples that Grasselli tested 
were 140 by 140 mm. The size of the contact points are small compared to the 
samples for testing the uniaxial compressive strength. It is also well known that 
the uniaxial compressive strength is scale dependent; see for example the 
empirical correlations proposed by Hoek and Brown (1980), Barton (1987) and 
Wagner (1987). It therefore seems realistic that the strength of individual contact 
points at this sample size is higher than the uniaxial compressive strength.  
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Table 4.1 Mechanical properties of rocks used in shear test by Grasselli (2001) 

Rock type Sample Name σci (MPa) φb (o) 
Magny Limestone C 25 36 
Tarn Granite G 173 34 
Gneiss Gn 184* 36 
Carrara Marble M 87 37 
Sandstone ML 10 37 
Serpentite S 74 39 

*) 160 MPa for sample Gn6 
 
Tabell 4.2 Data from Grasselli (2001) of surface roughness characterization and shear test results 
of different samples together with calculated dilation. 

Surface roughness 
characterization 

Results shear tests Performed 
calculation 

Sample Ao C Θ*
max 

(o) 
φp  
(o) 

σn 
(MPa) 

i  
(o) 

Ac,th i  
(o) 

C1 0.491 7.03 80 65 1.07 29 0.043 23 
C2 0.462 5.64 80 64 1.07 28 0.043 28 
C3 0.507 6.18 88 56 3.72 20 0.149 16 
C4 0.508 4.74 65 62 2.45 26 0.098 19 
C5 0.495 5.26 74 58 3.11 22 0.124 17 
C6 0.546 5.19 68 65 1.02 29 0.041 27 
C8 0.555 5.71 74 57 3.11 21 0.124 17 
G1 0.522 5.75 72 68 2.30 34 0.013 34 
G2 0.553 6.63 84 68 2.30 34 0.013 36 
G4 0.484 6.12 65 65 2.19 31 0.013 29 
G5 0.460 5.33 57 65 1.12 31 0.007 31 
G6 0.477 7.39 84 69 1.12 35 0.007 37 
G7 0.470 7.15 81 68 1.12 34 0.007 37 
G9 0.508 5.85 75 69 1.12 35 0.007 39 
Gn3 0.496 8.47 65 42 2.65 6 0.014 22 
Gn6 0.462 8.52 69 61 1.90 25 0.012 24 
Gn9 0.488 8.12 63 49 3.52 13 0.019 21 

Gn10 0.500 8.18 70 48 3.57 12 0.019 23 
Gn11 0.432 10.28 74 51 3.52 15 0.019 19 
Gn12 0.413 8.87 66 39 4.08 3 0.022 15 
Gn13 0.503 9.17 74 53 2.60 7 0.014 24 
M1 0.513 9.64 76 63 0.87 26 0.010 25 
M2 0.399 9.36 51 53 1.73 16 0.020 14 
M3 0.509 14.93 83 55 0.87 18 0.010 19 
M4 0.501 10.51 77 57 3.78 20 0.043 16 
M5 0.533 8.92 59 60 2.60 23 0.030 16 
M6 0.450 10.18 68 59 2.60 22 0.030 16 
M7 0.529 10.75 69 56 3.78 19 0.043 14 
M8 0.459 10.52 72 59 3.83 22 0.044 14 
M9 0.494 10.36 59 60 2.60 23 0.030 14 

M10 0.515 10.79 67 60 0.87 23 0.010 21 
M11 0.533 9.89 68 54 8.57 17 0.099 11 
M12 0.429 7.28 55 60 1.79 23 0.021 19 
ML1 0.573 7.25 66 53 1.02 16 0.102 14 
ML2 0.481 5.66 55 47 4.13 10 0.413 1 
ML3 0.523 7.81 66 48 2.09 11 0.209 7 
S1 0.497 4.99 83 66 1.94 27 0.012 44 
S2 0.497 4.58 86 75 0.97 36 0.006 53 
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The yield strength might be somewhere between the transition stress and the 
uniaxial compressive strength. If this is the case, a smaller contact area could be 
expected which in turn would imply that a higher dilation angle will be 
calculated.  
 
A third explanation could also be that the resolution used by Grasselli (2001) does 
not represent the grain size of the intact rock. He used a resolution of 0.3 by 0.3 
mm. If a higher resolution had been used, the calculated dilation angle would 
increase. 
 
For the rock samples with low uniaxial normal stress, i.e. soft rock, shearing 
through the base of the might occur at a low dilation angle. This might explain the 
poor fit for the sandstone samples (ML1-ML3). 
 
In summary, the performed calculations, with the exception of the Gneiss 
samples, support the results which suggest that the developed model could be 
used to estimate the dilation angle under different normal loads for a perfectly 
mated full sized joint. Furthermore, sliding over the asperities is the major failure 
mechanism, at least for hard rocks. This implies that the peak friction angle could 
be expressed as the sum of the basic friction angle and the dilation angle. 
 

4.7.2 Full size scale 
 
In order to investigate if the conceptual model describes changes in the dilation 
angle due to changes in scale correctly, it is necessary to have data from 
performed shear tests in different sizes. Furthermore, the Hurst exponent must 
have been determined together with parameters for the potential contact area ratio 
and the constant which describes the degree of matedness. Cases do not exist in 
the literature where all these parameters and test results were derived. Therefore, 
it was not possible to perform an accurate verification. 
 
To be able to perform some form of comparison, five shear tests performed by 
Lanaro (2001) were used. The results from these tests were compared to results 
obtained with Barton and Bandis (1982) empirical equations for scale corrections. 
The shear strength of the samples tested by Lanaro (2001) was performed with 
direct shear test carried out according to the recommendations by ISRM (1981). 
The tests were performed on drill core samples with a diameter of 61 mm. The 
orientation of the joint was perpendicular to the core axis for all samples. All 
results from the shear tests were not published by Lanaro, but were obtained 
through personal communication.  
 
Lanaro (2001) measured the surface topography of the joint surfaces with a 3D 
laser scanner having an accuracy of ±50 μm. The statistics of the average slope 
were expressed by Lanaro using a power law for the standard deviation of the 
mean slope, σslope, calculated for sub-samples of different sampling sizes, Δx.  
 

1H
slope ahG xσ −= ⋅Δ        (4.37) 
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Where Gah is a dimensional proportionality constant related to the amplitude or 
asperity height and H is the Hurst exponent, see Lanaro (2001) for a more 
thorough description of the different parameters. The sampling size, Δx, varied 
between 2 to 20 mm. No stationary threshold for the standard deviation of the 
asperity height was observed in this sampling size interval. 
 
The samples consisted of Äspö Diorite with inconclusive band of fine grained 
granite. The uniaxial compressive strength was estimated to 195 MPa. Data from 
the surface characterization for these five samples are presented in Table 4.3 
below. 
 
Table 4.3 Data for surface characterization of five samples from Lanaro (2001). 

Sample Gah
0,5 H 

KA3579G-9.43 0.256 0.738 
KA3579G-10.73 0.164 0.799 
KA3579G-11,25 0.187 0.686 
KA3579G-14.86 0.153 0.676 
KA3579G-19.45 0.117 0.615 

 
Each sample was tested under normal stresses equal to 0.5 MPa, 5 MPa and 10 
MPa. The exceptions were KA3579G-9.43 and KA3579G-10.73 which were 
tested at 1 MPa instead of 0.5 MPa. In this analysis, the results from the tests with 
the lowest normal stress were used, since they were performed with an 
undamaged joint surface.  
 
In order to estimate the basic friction angle it was assumed that the residual shear 
strength from the tests with a normal stress of 10 MPa corresponds to the basic 
friction angle. This methodology was used since normal and shear deformation 
during the tests were logged at long time intervals (10 sec), which resulted in an 
insufficient resolution for the dilation angle. Therefore, reliable basic friction 
angles could not be derived from measured normal and shear deformations. With 
this methodology, a basic friction angle of 34.4o was derived. The standard 
deviation of the five samples for the basic friction angle were 2.56o, giving a 
coefficient of variation of 0.07. 
 
In the table below, normal stress, σn, measured peak shear strength, φp, shear 
displacement at peak shear strength, δs,p, and estimated contribution from 
roughness, φp-φb, together with back calculated values on JRC are presented based 
on the shear tests performed by Lanaro.  
 
Table 4.4 Measured normal stress, σn, peak shear strength, φp, shear displacement at peak shear 
strength, δs,p, and estimated contribution from roughness, φp-φb, together with back calculated JRC 
values based on shear test by Lanaro. 

Sample σn 
(MPa) 

φp  
(o) 

δs,p 
(mm) 

φp-φb 
(o) JRC 

KA3579G-9.43 1.08 51.1 0.97 16.7 7.4 
KA3579G-10.73 1.10 66.5 0.33 32.1 14.3 
KA3579G-11,25 0.63 59.0 0.51 24.6 9.9 
KA3579G-14.86 0.60 50.2 0.44 15.8 6.3 
KA3579G-19.45 0.56 63.8 0.23 29.4 11.6 
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However, no determination of the parameters for the potential contact area ratio 
and no estimation of the degree of matedness were performed. This means that it 
only is possible to perform an indirect comparison between the conceptual model 
and the Barton and Bandis (1982) model. 
 
The comparison performed here was done with the following methodology. The 
dilation angle, in, was based on the results from the shear test performed by 
Lanaro and the constant of matedness, k, was varied. The ratio Ln/Lg was based on 
the sample scale 61 mm. Values on the Hurst exponent was chosen according to 
Table 4.3. As previously mentioned, this is no direct verification. Also, to base 
the estimation on the sample scale 61 mm instead on the grain scale means that 
the dilation angles will not be estimated in the same way. This effect decreases for 
larger scales and are mainly of importance for scales under a few decimetres. 
Since no other data is available, this methodology was used as a rough indication 
to see if the reduction obtained with the equation proposed by Barton and Bandis 
(1982) agree with those proposed with the conceptual model. 
 
Based on this methodology, the contribution from roughness at 0.1 m, 0.3 m, 0.5 
m, 1 m, 5 m, and 10 m was calculated for the five samples using equation 4.36. 
The results are presented in Figure 4.21 and 4.22. 
 
As the results in Figure 4.21 and 4.22 shows, the conceptual model predicts 
changes in the dilation angle which agree with the results using the Barton and 
Bandis (1982) model for a k=0.8. The close correlation between the curves 
suggests that the conceptual model probably captures the basic mechanism behind 
the scale effect; namely how the inclination of the asperities at the contact points 
changes. However, it should be observed that the methodology where the sample 
scale is used as a reference scale gives values on k which probably are slightly 
higher than they would have been if the grain scale was used. Supplementary 
calculations not shown here indicate that a more correct value on k might be 
around 0.6 if a grain scale was used. This value also corresponds better to the 
results presented in Figure 4.8. 
 
It is interesting to notice that Barton and Bandis uses scale correction on both the 
JRC and the JCS component, while the conceptual model uses only changes in 
inclination of active asperities and degree of matedness. It is possible that the 
effect from an unmated joint, i.e. k<1, has been interpreted by Barton and Bandis 
(1982) as a possible scale dependent JCS component. If it really exists, a 
contribution to the scale effect from changes in the uniaxial compressive strength, 
and how large this contribution might be, can not be concluded with this analysis. 
 
Furthermore, for sample KA3579G-10.73, the predicted values with Barton and 
Bandis (1982) model appears to be underestimated at larger scales. This agrees 
with the discussion in the previous chapter, see Figure 3.5, where it was seen that 
high JRC values at laboratory scale, in combination with larger scales, resulted in 
a contribution from roughness that probably are too low. On the other hand, it 
should be kept in mind when these results are analysed that Barton and Bandis 
(1982) model were not derived for scales which exceeds the block size, i.e. a few 
meters. 
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Figure 4.21 Comparison between predicted contribution from surface roughness according to 
Barton Bandis and predicted dilation angle from conceptual model for sample KA3579G-9,43 at a 
normal stress of 1,08 MPa. 
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Figure 4.22 Predicted dilation angle at the scales 0.061 m, 0.1 m, 0.3 m, 0.5 m, 1 m, 5 m, and 10 
m from conceptual model compared against values predicted with Barton Bandis criteria using 
samples from Lanaro (2001). 
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4.8 Conclusions 
 
In order to obtain better and more detailed understandings of the mechanisms that 
affect the peak shear strength of full sized joints at different scales, a conceptual 
model for unfilled rough joints was developed based on adhesion theory, 
measurements of surface roughness and assumption regarding the change in size 
of contact points.  
 
This model was partly verified for samples under different normal loads in 
laboratory scale and partially by comparing results for different scales with the 
empirical equations for scale correction proposed by Barton and Bandis (1982). 
 
However, more shear tests have to be performed at different scales, where all the 
parameters necessary to calculate the dilation angle with the conceptual model 
have been determined, before the model could be used with confidence.  
 
Based on the results from these analyses it can be concluded that the conceptual 
mode in the main questions can: (1) propose an explanation for the measured 
dilation angle for laboratory samples of perfectly mated unfilled rough joints and, 
(2) suggest an explanation for changes in the dilation angle due to an increased 
scale and different degrees of matedness. 
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5 LABORATORY AND IN SITU SHEAR TESTS AT LÅNGBJÖRN 
HYDROPOWER STATION 

5.1 Introduction 
 
Långbjörn hydropower station is located at the river Ångermanälven in the county 
of Jämtland and was put into operation 1960. The concrete dam is about 30 m in 
height. The central part of the dam consists of two power intakes and a spillway 
section of buttress type with three spillway openings. The dam is divided into 
monoliths with a width between 8 to 18 m. On the left side there are two abutment 
monoliths of buttress type, and on the right side there are three of buttress type, 
see Figure 5.1. 
 

 
Figure 5.1 Overview of Långbjörn hydropower station. 
 
The geology at the site was investigated by core drilling and surveys of outcrops 
(VBB Anläggning 2000a). The intact rock consists of grey coarse grained granite 
with some small intrusions of pegmatite. Two almost vertical joint sets exist with 
strikes perpendicular and parallel to the dam axis respectively. In addition, a joint 
set with varying strike and an almost horizontal dip exist in the rock mass. Some 
of these joints are thought to be relaxation joints with a high persistence, see 
Figure 5.2. These joints are slightly weathered and have an aperture between 0-5 
mm. The joints are, in general, unfilled, but some infilling materials consisting of 
weathered materials and silt particles were found in some joints at shallow depth 
under the spillway section. 
 
In 1994, by commission of the dam owner Vattenfall, a SEED (Safety Evaluation 
of Existing Dams) evaluation of the structure was performed (VBB Anläggning 
1994). In this evaluation, questions regarding the stability of the dam emerged. 
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One of the questions was the safety against sliding along horizontal joints in the 
rock mass. As a consequence, the shear strength of these joints was investigated 
based on laboratory shear tests on drilled cores performed at the Department of 
Soil and Rock Mechanics, Royal Institute of Technology (KTH), in the year 2000 
(VBB Anläggning 2000b). The results from these tests are described in a separate 
subchapter below.  
 
Based on the estimated shear strength from the laboratory testing of the horizontal 
joints, a new stability analysis of the concrete dam was performed (SWECO VBB 
VIAK 2002). In this analysis, it was concluded that the dam did not meet the 
acceptance requirements for sliding stability. Therefore, in 2006, the dam was 
reinforced with pre-stressed anchor cables. However, there still exist uncertainties 
regarding the shear strength of the joints since it mainly was estimated on results 
from small scale laboratory testing. In order to reduce these uncertainties, and at 
the same time investigate possible scale effects for the shear strength of unfilled 
and rough joints, a shear testing programme at different scales in both laboratory 
and in situ was undertaken. 
 

 
Figure 5.2 Photo of persistent relaxation joints in the tailrace channel. 
 
The main objective for the shear tests performed and described in this chapter is 
to obtain information for estimating the shear strength of the horizontal joints 
present in the rock mass under the dam. An additional objective is to study 
possible scale effects on the peak shear strength of the joints. 
 
In this chapter, the results from previously performed laboratory shear tests at 
KTH are first presented, followed by laboratory shear tests performed at SP 
(Technical Research Institute of Sweden) and LTU (Luleå Technical University). 
Thereafter, the in situ shear test is described and the results are presented. Based 
on this series of tests of joint samples of different sizes, the peak shear strength 
and possible scale effects on the friction angle are investigated and discussed. 
Finally, a summary and an interpretation of the results are performed. At the end, 
conclusions are presented. 
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5.2 Previously performed laboratory shear tests 
 
In 2000, by commission of VBB Anläggning, the Department of Soil and Rock 
Mechanics at KTH performed several shear tests on joint samples from cores 
drilled under the dam (VBB Anläggning 2000b). The shear tests were performed 
according to the methods suggested by ISRM (ISRM 1981). All of the samples 
consisted of coarse grained granite. Four samples were sheared, each under four 
different normal stresses, resulting in sixteen shear test cases. The diameter of the 
samples was 42 mm for two samples and 62 mm for the other two. 
 
Surface roughness was characterized by estimating the parameter JRC of the 
samples. This was done by visually comparing the roughness of the joint surfaces 
against predefined profiles by Barton and Choubey (1977). 
 
The results from the shear tests, together with estimated and back calculated JRC 
values, are presented in Table 5.1 below. For the back calculation of the JRC 
parameter, a basic friction angle of 35o was used. The joint wall compressive 
strength, JCS, was estimated to be 100 MPa. 
 
Table 5.1 Results from shear tests showing normal stress, σn, peak shear strength, τp, shear 
displacement at peak strength, δs,p, and peak friction angle, φp, together with estimated and back 
calculated JRC values (VBB Anläggning 2000b). 

Sample σn 
(MPa) 

τp 
(MPa) 

δs,p 
(mm) 

φp 
(o) 

JRCestimated JRCback calculated 

0.89 1.71 2.5 62.5 13.4 
1.76 2.52 0.7 55.1 11.5 
2.64 3.32 1.1 51.5 10.5 

D4 
φ=42 mm 

3.52 4.57 1.3 52.4 

10 

12.0 
0.79 1.22 1.0 57.1 10.5 
1.44 2.04 1.5 53.7 10.2 
2.88 3.39 1.5 49.7 9.5 

D10 
φ=42 mm 

4.05 4.56 1.9 48.4 

9 

9.6 
0.60 2.03 2.2 73.5 17.3 
1.11 2.83 1.6 61.3 13.5 
2.21 4.18 1.5 62.1 16.4 

A1 
φ=62 mm 

3.31 5.57 2.0 59.3 

6 

16.4 
0.71 1.41 1.0 63.3 13.2 
1.42 2.01 1.3 54.8 10.7 
2.13 3.21 1.7 56.4 10.0 

B3 
φ=62 mm 

2.98 3.88 2.3 52.5 

5 

11.5 
 
As the results in Table 5.1 shows, the peak friction angle varied between 48.4 and 
73.5 degrees. For the samples tested under the lowest normal stress, the mean 
peak friction angle was 64.1o with a standard deviation of 8.6o. The peak friction 
angle occurred at shear displacements between 1.0 and 2.5 mm. 
 
Studying the estimated and back calculated values on JRC, it can be seen that 
there exist a discrepancy between them. One reason for this is that there exists a 
subjective uncertainty in choosing correct JRC values from predefined profiles. It 
can also be seen that there exist variations in the back calculated JRC for different 
normal stresses. As a general trend, JRC becomes lower with increasing normal 
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stresses. This is mainly an effect from a successive degradation of the surface 
roughness with increasing normal stress for each shear test case. 
 
Based on the results from these shear tests, an attempt was made to analyse if the 
peak friction angle at laboratory scale could be expressed as the sum of the basic 
friction angle and the dilation angle, φb+i, as suggested in Chapter 4. However, 
when the files containing the results from the shear tests were analysed, it became 
clear that the sampling interval was too long and that the shear rate was not 
entirely constant. It was therefore not possible to calculate an accurate dilation 
angle with a sufficiently small increment of shear and normal displacements.  
 

5.3 Laboratory shear test performed at SP 

5.3.1 Introduction 
 
In order to further analyse the peak shear strength at laboratory scale, three 
additional direct shear tests on drilled cores containing a joint were carried out by 
commission of the author. The testing was carried out by the Technical Research 
Institute of Sweden (SP). The main objective, in addition to measure the peak 
shear strength, was to investigate if the peak shear strength could be expressed as 
the sum of a basic friction angle and a dilation angle. 
 

5.3.2 Test samples 
 
When joints are tested, and results are compared against each other, it is important 
that the shear tests are carried out on similar types of joints, preferably on the 
same joint if possible, since the surface characteristics of the joints might be 
different from one joint to another. For the joints tested in this chapter, it is 
samples representative for the persistent joints that are of interest. The surfaces of 
these joints are usually slightly weathered and not perfectly mated, contrary to the 
other joints in the rock mass which could be expected to be unweathered and 
better mated. In this case, the author was not able to retrieve samples from the 
same joint. Instead, joints with similar surface characteristics were retrieved from 
drilled cores stored under the dam with the following methodology. 
 
The matedness of the joints was first visually inspected when the cores were lying 
in their boxes. Those joints which were horizontal and not perfectly mated were 
identified. The surfaces of these joints were further inspected in order to judge if 
the surface could be considered to originate from more persistent joints. Example 
of reduced matedness due to weathering for one of the samples can be seen in 
Figure 5.3 below. On the basis of this visual inspection, three samples were 
chosen, B1, B5, and D24. They were then sent to SP for direct shear testing. 
However, it should be observed that this methodology does not necessarily mean 
that the samples were taken from the intended relaxation joints, since it is difficult 
to judge the persistence of a specific joint from drilled cores.  
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The rock type for all the samples is gray, coarse grained granite. Since the 
orientations of the joints with respect to the axis of the drilled cores were not 
exactly perpendicular, the shapes of the samples were not exactly circular. In 
Table 5.2, the length and width, together with the total area of the joint surfaces, 
are presented. Pictures of the joint surfaces in profile can be seen in Figure 5.4. 
 
Table 5.2 Length, width, and total area of the joint surfaces. 

Sample Width (mm) Length (mm) Area (cm2) 
B1 61.6 63.1 30.5 
B5 61.8 63.1 30.6 
D24 61.7 63.1 31.1 

 
Before the joints were sheared, the drilled cores were cut and placed in circular 
steel moulds which were used to keep the samples in place during the shear 
testing. The upper and lower surface was centred in the moulds in such a way that 
the joint surfaces became mated. The samples were thereafter fixed in the moulds 
with rapid-hardening cement. 
 

 
Figure 5.3 Photo of sample B1 showing reduced matedness due to weathering. 
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Figure 5.4 Photos of the samples B1, B5 and D24 before shearing. 
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5.3.3 Test set up and procedure for shear tests 
 
Before the shear testing was performed, the joint surfaces were moistened with 
water which was allowed to sink in a few minutes. This was done since it has 
been observed that water reduce the friction angle, see for example Barton and 
Choubey (1977). After that, the upper and lower part of the sample was placed in 
the shear box. A constant normal load corresponding to a normal stress of 0.8 
MPa was applied on the samples. This value corresponds to the maximal effective 
normal stress under the dam. Shearing was performed approximately 5 mm for 
each sample at a constant shear rate of 0.5 mm/min. Data was registered during 
the test at an interval of 0.5 sec which correspond to a shear rate of 0.008 mm/s.  
 
Normal and shear load were measured during the test with electronic load-cells, 
while normal and shear displacements were measured with LVDT´s (Linear 
Variable Differential Transformers). In the normal direction, the displacements 
were measured with four LVDT´s, one in each corner of the sample. The mean 
value of the measured data was used as a measure of the average normal 
displacement. In the shear direction, one LVDT was used to measure the shear 
displacement.  
 

5.3.4 Results 
 
In Table 5.3 below, the results from the shear test are presented. The table shows 
normal stress, σn, peak shear stress, τp, shear displacement at peak, δs,p, peak 
friction angle, φp, dilation angle at peak, ip, and basic friction angle at peak, φb,p. 
The dilation angle has been calculated with equation 5.1 below. 
 

arctan dni
ds

⎛ ⎞= ⎜ ⎟
⎝ ⎠

        (5.1) 

 
Where dn is the increment of normal displacement for a given increment of shear 
displacement, ds. This increment of shear displacement was chosen to be 0.08 
mm. A reduction of the contact area between the upper and lower joint surfaces 
due to shear displacement was performed and normal stress was adjusted. The 
basic friction angle at peak was calculated as the peak friction angle minus the 
dilation angle at peak. The average basic friction angle, φb,av, was also calculated, 
based on the average value for a shear displacement interval of 1 to 5 mm. In 
addition to this, the maximal dilation angle, imax, and the shear displacement when 
maximal dilation angle occurs, δi,max, was also calculated. The results are 
presented in Table 5.3. Figures showing the shear test results are presented in 
Figure 5.5 to 5.7. In Figure 5.8, photos after the shear tests are shown.  
 
Table 5.3 Results from direct shear tests of samples B1, B5 and D24. 

Sample σn 
(MPa) 

τp 
(MPa) 

δs,p 
(mm) 

φp 
(o) 

ip  
(o) 

φb,p 
(o) 

φb,av 
(o) 

imax  
(o) 

δi,max 
(mm) 

B1 0.80 1.82 0.26 66.2 33.5 32.7 34.1 36.3 0.09 
B5 0.80 1.33 0.27 59.0 29.6 29.4 31.0 30.3 0.30 

D24 0.80 2.69 0.14 73.4 31.2 42.2 37.3 36.2 0.25 
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Figure 5.5 Stress ratio (friction angle) – shear displacement diagram for sample B1. 
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Figure 5.6 Stress ratio (friction angle) – shear displacement diagram for sample B5. 
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Figure 5.7 Stress ratio (friction angle) – shear displacement diagram for sample D24. 
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Figure 5.8 Photos of samples after shear tests. 
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5.3.5 Summary and interpretation of results 
 
The results from the shear test yielded peak friction angles of 66.2, 59.0 and 73.4 
degrees for samples B1, B5 and D24 respectively. These results are in line with 
the results from the previous shear testing performed on drilled cores taken from 
the rock foundation under the dam. The dilation angles at peak shear strength 
were observed to be 33.5, 29.6 and 31.2 degrees for samples B1, B5 and D24 
respectively. Furthermore, peak shear strength occurred at small shear 
displacements between 0.15 to 0.30 mm.  
 
According to the adhesion theory, as previously described in Chapter 4, the 
contact points are welded together at “junctions”. The shear force required to 
break these bonds under a certain normal load express the basic friction angle 
between two planar but microscopic rough surfaces. In Chapter 4, it was further 
concluded that the total friction angle could be expressed as the sum of the basic 
friction angle and the dilation angle. However, it was further shown by conceptual 
calculations that an asperity component may be present for small samples. By 
studying the results, it is possible to analyse if this might be the case. 
 
If the results in Figure 5.5 to 5.7 are studied, it can be seen that for sample B1, a 
correction for dilation on the total friction angle gave an almost linear horizontal 
term. This indicates that no contribution from any asperity failure component was 
present for this sample. If the diagram for sample B5 is studied, signs of 
interlocking can be seen at approximately 2.5 mm. At a shear displacement of 2.5 
mm, the dilation suddenly drops which results in an increase of the basic friction 
angle. This indicates that interlocking might occur at this shear displacement, 
which means that the rate of shear displacement between the upper and the lower 
surfaces might have decreased locally. When this happens, the mechanism for the 
basic friction angle may be disturbed. A similar behaviour can also be seen for 
sample D24 at a shear displacement of 2.7 mm. It is also interesting to notice that 
sample B5 and D24 has crushed edges, which could be seen in Figure 5.8. It is 
possible that interlocking occurred at these asperities, which lead to the cracking 
of the sample at these locations. It is also possible that the granular material which 
resulted from this cracking affects the frictional process necessary to develop the 
basic friction angle. It might also be possible that the crushing of the edges 
resulted in a stress concentration at the remaining part of the sample which 
affected the dilation angle. 
 
The results from these three samples point towards the fact that interlocking may 
affect the shearing for small samples under low normal stresses. It may therefore 
not be suitable to estimate the basic friction angle from samples with this 
relatively small dimension under low normal stresses. 
 
Even if interlocking might affect the basic friction angle, it could be seen in Table 
5.1 that the basic friction angle appears to be around 35o for these samples. 
However, it is possible that the mineral composition of the granite for each 
sample lead to a variance of the basic friction angle. This may be possible since 
different minerals probably have different adhesive strengths. Furthermore, the 
relative spatial variation of the minerals is larger for a small sample than for a 
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larger sample. It could therefore also be expected that the variance of the basic 
friction angle, up to a representative elementary area (REA), would decrease for 
larger samples. How large this REA might be is unknown. 
 
No estimation of surface roughness was performed for these samples. Estimation 
of the JRC from predefined profiles was not performed, since analysis of the 
previous performed shear tests showed that this methodology gave unreliable 
results. To carry out tilt, push or pull-tests in order to estimate the JRC is difficult 
on the drill cores and was therefore not performed. Back calculated values on 
JRC, with an assumed basic friction angle of 35o and an assumed JCS of 100 
MPa, gave JRC equal to 16.0, 14.1 and 14.9 for sample B1, B5 and D24 
respectively. These back calculated values are in line with values back calculated 
based on the previously performed shear tests on the drill cores. 
 

5.4 Laboratory shear tests performed at LTU 

5.4.1 Introduction 
 
Due to the uncertainties regarding the peak shear strength from previously 
described shear tests at drilled core scales, it was determined to perform 
additional laboratory shear tests at larger scales. The main objective with these 
tests was to investigate a possible scale effect and variations of the peak shear 
strength. These tests were performed with a shear box at Luleå University of 
Technology. The shear box has the capacity to perform shear tests of dimensions 
up to 280 by 280 mm according to the methods suggested by ISRM (ISRM 1981). 
 
Back-calculated values for the previously performed shear tests gave a mean JRC 
value of 14.2. For samples with dimensions of 125 by 125 mm and 240 by 240 
mm, under the assumption of a basic friction angle of 35o and a JCS equal to 100 
MPa, the contribution due to roughness was estimated by using Barton and 
Bandis (1982) equations for scale corrections. The contribution due to roughness 
became 22.6o for the small samples and a contribution of 17.4o for the larger 
samples. It was therefore decided to use these dimensions in the test program. 
Seven samples were chosen for each dimension in order to investigate the 
variation of the peak shear strength, the basic friction angle and the dilation angle 
in terms of sample sizes. 
 

5.4.2 Obtaining the samples 
 
Adjacent to the concrete dam at Långbjörn there exist several blasted rock walls 
where persistent relaxation joints are visible. Their location implies a benefit 
compared to drilled cores, since it is possible to choose a joint based on visual 
inspection and thereafter drill out the samples. 
 
The samples were obtained by over-drilling the chosen joint with the desired 
dimension, i.e. with diameters equal to 125 mm and 240 mm. Since the rock wall 
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was blasted, it was important that the drilling continued into the rock before the 
samples were taken in order to reduce possible blast damages. On the other hand, 
with an increased length it also became harder to keep the joints centred in the 
core. It was therefore necessary to drill a number of trial holes in order to analyse 
the orientation of the joint before the samples were drilled. In general, the samples 
were taken a few decimetres from the rock wall surface. The persistent joint 
together with the holes drilled for the samples can be seen in Figure 5.9.  
 

 
Figure 5.9 Photo over the blasted rock wall where the samples were taken. 
 
Samples sent to LTU for shear testing are shown in Figure 5.10 and 5.11. In the 
two figures, it can be observed that the joints are not well mated. The joint 
undulate and sometimes splits into two parallel joints with lenses of intact rock in 
between. As far as possible, the sections of the samples where lenses of intact 
rock were present were omitted when the samples for shear testing were prepared.  
 

 
Figure 5.10 Samples sent to LTU for shear testing. 



Chapter 5 Laboratory and in situ shear tests at Långbjörn hydropower station 

 91

 
Figure 5.11 Samples sent to LTU for shear testing. 
 

5.4.3 Preparation of samples 
 
Initially, those parts of the drilled cores appropriate for shearing was sorted out. 
This meant that those parts of the drilled cores where the upper and lower joint 
surfaces were separated by one or several lenses of intact rock were omitted.  
 
After that, the samples were cut into its desired dimensions; i.e. 125 mm by 125 
mm and 240 mm by 240 mm. 
 
Thereafter, the samples were fixated into stiff steel moulds. Rapid hardening 
concrete was casted in the moulds, which created samples of equal shape and 
dimension ready for the shear box. Totally, seven small samples and seven large 
samples were prepared. The shape and outer-dimensions of the prepared samples 
can be seen in Figure 5.12. 
 

 
 
Figure 5.12 Shape and dimensions of direct shear test sample (From Saiang et al. 2005). 
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5.4.4 Test set up and procedure for shear testing 
 
The servo controlled shear test machine has a capacity of 500 kN for both normal 
and shear forces and can be seen in Figure 5.13. The principal components of the 
shear machine are presented in Figure 5.14.  
 

 
Figure 5.13 Photo of the direct shear machine at Luleå Technical University.  
 
 

 
 
 

Figure 5.14 Principal components of the shear machine, (0) stiff steel frame, (1) lower box, (2) 
upper box, (3) specimen holder, (4) hydrostatic bearing, (5) spherical bearing, (6) & (7) hydraulic 
actuators, (8) bucker up (From Saiang et al. 2005). 
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After a sample was placed in the shear box, four LVDTs were glued on the 
sample according to Figure 5.15 below in order to measure the normal 
displacement of the sample. 
 

 
Figure 5.15 Location and set up for the LVDTs. Two additional LVDTs are placed on the back of 
the sample (From Saiang et al. 2005). 
 
All shear tests were performed with a shear rate of 0.1 mm/min. This shear rate 
was chosen in order to avoid uncontrolled displacements and failures. A normal 
stress of approximately 0.8 MPa was used for all fourteen samples. The shear and 
normal displacement increment for calculation of the dilation angle according to 
equation 5.1 was chosen to be 0.1 mm. One shear test was performed for each 
sample, with a maximum shear displacement of 5 mm. The reason to only 
perform one shear test for each sample was due to the successive degradation of 
the surface roughness that would occur if multiple tests were performed on the 
same sample. This would lead to results which are not representative for the in 
situ joint. Also, multiple shear tests make it difficult to investigate the contact 
areas of the joint surfaces after testing. 
 

5.4.5 Correction of test data 
 
After the samples were placed in the direct shear machine, the upper part of the 
shear box was successively lowered until the upper and lower surface of the 
sample were just in contact.  
 
The upper part of the shear box is suspended with a number of springs which can 
be seen in Figure 5.13. This means that the total force applied by the vertical 
actuator becomes equal to the force taken by these springs and the force applied 
on the sample. As a consequence, it is necessary to subtract the force taken by the 
springs from the total force in order to obtain the force applied on the sample. 
 
The force in the springs can be determined by repeatedly apply normal 
displacements without any sample in the machine and at the same time measure 
the normal force. The result is shown as a curve describing the spring stiffness, 
see Figure 5.16. Studying the curve in Figure 5.16, it can be seen that the curve 
creates a hysteresis during loading and unloading paths. This means that energy is 
lost in the spring due to friction and heat. The maximal vertical difference 
between the upper and lower part of the curve is approximately 4 kN. This is 



Shear strength of unfilled and rough rock joints in sliding stability analyses of concrete dams 

 94 

important to take into consideration, especially for small samples under low 
normal stresses. The hysteresis of the springs clearly reveals that small samples 
with low normal stresses are associated with relatively high uncertainties. For the 
samples in this test series, a normal load of 0.8 MPa gives a total normal load 
equal to 12.5 kN for the small samples and 50 kN for the large samples, which 
should be compared to the maximal vertical difference in the curve equal to 
approximately 4 kN. 
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Figure 5.16 Normal displacements versus normal load for the shear machine without any sample 
in the shear box. 
 
When the upper part of the sample is successively lowered in order to reach 
contact between the surfaces, normal force is first applied in the springs and 
thereafter, when contact is made, in both the springs and on the sample. This 
means that it is mainly the upper part of the curve in Figure 5.16 that is followed 
during the test. Therefore, a fourth degree polynomial for the spring stiffness was 
derived based on regression analysis of the upper part of the curve in order to 
describe it, see Figure 5.17. 
 
With this methodology, initial normal forces at contact prior to shearing, Fn,0, 
according to Table 5.4 was obtained. 
 
Table 5.4 Initial normal forces at contact prior to shearing. 

Sample Fn,o 
(kN) Sample Fn,o 

(kN) 
S1 1.8 L3 3.5 
S2 3.0 L4 2.5 
S3 -1.3 L6 2.9 
S4 4.1 L7 2.8 
S5 1.0 L8 6.0 
S6 -2.4 L9 3.6 
S8 3.1 L10 3.5 
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Figure 5.17 Upper part of the curve for spring stiffness with fourth degree polynomial. 
 
Studying the values in Table 5.4, it can be seen that Fn,0 is about a few kN for 
most of the samples, which appears to be reasonable. To obtain forces equal to 
zero is difficult, since it is necessary to apply some load in order to verify that true 
contact has been established between the upper and the lower part of the sample.  
 
However, for sample S3 and S6, Fn,0 is negative which is not realistic. The reason 
for the negative values can be found in the process when the upper part of the 
sample was successively lowered. For these two samples, a high normal load was 
applied on the samples due to mistakes in the steering process when the upper 
part of the sample was lowered. As a consequence, S3 and S6 was exposed for a 
force of 46 and 69 kN equal to a normal stress of 2.3 and 4.5 MPa respectively. 
Therefore, it was necessary to unload these samples before shearing could take 
place. 
 
This also means that the upper part of the curve in Figure 5.16 can not be used for 
these samples. Therefore, Fn,0 was determined with the lower part of the curve 
instead, which gave initial normal forces equal to 2.2 kN for S3 and 1.1 kN for S6 
respectively.  
 

5.4.6 Results 
 
The results from the direct shear tests are presented in Table 5.5 and 5.6. Figure 
5.18 presents the results from sample S1. Figures showing the results for all of the 
samples can be found in Appendix A, while photos of the samples after shear 
testing are presented in Appendix B. 
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Table 5.5 Results from shear tests of samples with dimensions 125 by 125 mm.. 

Sample σn 
(MPa) 

τp 
(MPa) 

δs,p 
(mm) 

φp 
(o) 

ip  
(o) 

φb,p 
(o) 

φb,av 
(o) 

imax  
(o) 

δi,max 
(mm) 

S1 0.98 0.76 3.16 37.8 3.5 34.3 33.5 6.2 3.90 
S2 0.94 0.83 7.08 41.5 8.9 32.6 32.7 8.6 6.83 
S3 1.06 1.10 1.94 46.0 11.9 34.2 32.4 13.4 1.34 
S4 1.03 0.83 0.96 38.7 7.1 31.6 27.2 11.0 4.74 
S5 0.83 0.60 3.40 35.8 0.6 35.2 33.8 2.5 2.07 
S6 0.85 0.82 3.22 44.6 7.3 37.3 35.6 8.3 3.10 
S8 0.98 0.90 6.05 42.7 8.7 34.1 29.6 12.6 6.08 

 
 
Table 5.6 Results from shear tests of samples with dimensions 240 by 240 mm. 

Sample σn 
(MPa) 

τp 
(MPa) 

δs,p 
(mm) 

φp 
(o) 

ip  
(o) 

φb,p 
(o) 

φb,av 
(o) 

imax  
(o) 

δi,max 
(mm) 

L3 0.86 0.77 2.41 41.9 6.5 35.4 34.7 8.6 1.40 
L4 0.79 0.68 2.70 40.5 5.7 34.8 33.9 7.3 6.30 
L6 0.78 0.82 2.82 46.5 8.9 37.6 35.8 13.2 3.18 
L7 0.90 0.82 2.20 42.4 7.6 34.8 34.2 9.4 1.39 
L8 0.83 0.80 2.42 43.9 2.7 41.2 38.3 6.3 7.03 
L9 0.81 0.69 2.66 40.2 6.5 33.7 32.6 7.3 2.73 
L10 0.80 0.79 1.71 44.9 7.1 37.8 37.3 8.1 1.80 
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Figure 5.18 Measured friction angle and dilation angle, together with basic friction angle for 
sample S1. 
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5.4.7 Estimation of JCS from Schmidt rebound tests 
 
The use of the adhesion theory implies that the strength of the joint wall surface is 
important for the shear strength, since it can be used to estimate the true contact 
area for a given normal stress. However, the relaxation joints at Långbjörn are 
slightly weathered, which is known to affect the strength of the intact rock 
adjacent to the joint surface. It is therefore not possible to perform uniaxial 
compressive tests on drilled cores of intact rock in order to estimate the 
compressive strength of the granite, since they will overestimate the strength.  
 
Therefore, Schmidt rebound hammer index tests were performed in order to 
estimate joint wall compressive strength, JCS, as suggested by Barton and 
Choubey (1977), see equation 5.2. 
 

( )10 mlog 0.00088 1.01ci Rσ γ= ⋅ ⋅ +      (5.2) 
 
Where σci is the unconfined compressive strength of the joint wall, i.e. JCS. R is 
the Schmidt rebound number and γm is the rock density (kN/m3). Since it is 
important that the impulse from the Schmidt rebound hammer do not move the 
rock sample being tested, it was judged appropriate to perform the rebound 
measures on the large samples.  
 
Ten tests were performed on the large samples with the hammer directed 
vertically downward. Of these ten tests, the five lowest were omitted and an 
average of the five highest were calculated according to the recommendation by 
Barton and Choubey (1977). A density of the granite equal to 27 kN/m3 was 
assumed. Results from the tests and the estimation of the JCS using equation 5.2 
are presented in Table 5.7. 
 
Table 5.7 Results from Schmidt rebound hammer tests together with estimation of JCS. 

Sample R Rmean 
 (five highest) 

γ 
(kN/m3) 

σci 
(MPa) 

L3 43 
L3 43 
L6 31 
L6 27 
L7 40 
L7 53 
L8 48 
L8 41 
L9 51 
L9 47 

48.4 27 140 

 

5.4.8 Estimation of JRC from pull tests 
 
In order to estimate the surface roughness of the samples, the joint roughness 
coefficient, JRC, was determined based on performed pull tests. In these tests, the 
upper part of the sample was pulled over the lower part of the sample; a sort of 
simple shear tests carried out under a normal load equal to the weight of the upper 
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part of the sample. When the upper half of the sample was pulled, a load-cell 
registered the force, T, required to move it. Based on the measured force, T, in the 
load-cell, together with the weight of the upper part of the sample and estimated 
values on JCS and the basic friction angle, it was possible to back-calculate JRC. 
Results from this back calculation are presented in Table 5.8. 
 
Table 5.8 Results from direct shear tests of samples with dimensions 240 by 240 mm. 

Sample Test
No. 

Weight 
(N) 

T 
(N) 

φp 
(o) 

φp -φb 
(o) 

σn 
(MPa) 

JRCback-calculated JRCaverage  

1 283 55.8 20.8 5.2 
2 275 53.8 18.8 4.7 S1 
3 

221 
299 52.0 17.0 

0.014 
4.3 

4.7 

S3 1 373 59.2 24.2 6.6 
 2 363 58.6 23.6 6.4 
 3 

222 
331 56.2 21.2 

0.014 
5.7 

6.2 

S4 1 531 66.4 31.4 8.5 
 2 462 63.3 28.3 7.7 
 3 

232 
457 63.1 28.1 

0.015 
7.6 

8.0 

S5 1 233 45.5 10.5 2.9 
 2 229 224 44.4 9.4 0.015 2.5 2.7 

S6 1 504 65.7 30.7 8.3 
 2 338 56.0 21.0 5.7 
 3 

228 
409 60.9 25.9 

0.015 
7.0 

7.0 

S8 1 287 52.0 17.0 4.6 
 2 252 48.4 13.4 3.6 
 3 

224 
237 46.6 11.6 

0.014 
3.1 

3.8 

L3 1 439 59.8 24.8 5.9 
 2 316 51.1 16.1 3.8 
 3 

255 
321 51.5 16.5 

0.004 
3.9 

4.6 

L4 1 306 51.3 16.3 3.9 
 2 297 50.5 15.5 3.7 
 3 

245 
323 52.8 17.8 

0.004 
4.2 

3.9 

L6 1 413 59.0 24.0 5.7 
 2 358 55.3 20.3 4.8 
 3 

248 
370 56.2 21.2 

0.004 
5.0 

5.2 

L7 1 295 50.2 15.2 3.6 
 2 287 49.4 13.4 3.2 
 3 

246 
291 49.8 14.8 

0.004 
3.5 

3.4 

L8 1 410 58.2 23.2 5.5 
 2 416 58.6 23.6 5.6 
 3 

254 
364 55.1 20.1 

0.004 
4.8 

5.3 

L9 1 372 54.4 19.4 4.6 
 2 312 49.6 14.6 3.5 
 3 

266 
347 52.5 17.5 

0.005 
4.2 

4.1 

L10 1 339 52.5 17.5 4.2 
 2 300 49.1 14.1 3.4 
 3 

260 
290 48.1 13.1 

0.005 
3.1 

3.6 

 
As shown in Table 5.8, the values on JRC are considerable lower than those first 
estimated in the beginning of Chapter 5.4. Average values on JRC range from 3.4 
to 8.0. By using Barton´s (1973) criterion, together with average JRC values in 
Table 5.8, the calculated contribution from roughness was 7.5 to 17.0o. This is in 
line with observed dilation angles in Table 5.5 and 5.6, even though 17.0o are 
somewhat high. 
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5.4.9 Measurement of surface roughness with optical scanning 
 
In the conceptual model in Chapter 4 it was concluded that the dilation angle 
originates from surface asperities at contact, which could be idealized as 
superimposed asperities at different scales. It was further concluded that during 
shearing, the shear displacement leads to a concentration of the contact area to the 
steepest asperities at contact facing the shear direction. This contact area could, 
for a perfectly mated and unfilled joint, be described with the potential contact 
area ratio, Ac,p, as suggested by Grasselli (2001). In addition, it was assumed that 
the change of heights for surface asperities, hasp, with respect to asperity base 
lengths of different sizes, Lasp, could be expressed with a power function by 
defining two constants related to the amplitude parameter and the Hurst exponent. 
 
In order to make it possible to analyse these parameters described above, the joint 
surfaces for two of the samples, S6 and L7, were measured with optical scanning 
technique. The scanning was performed by the company Svensk Verktygsteknik 
in Luleå with the system ATOS III, see Figure 5.19. During the scanning, 
different fringe patterns was projected on the object to be measured, which was 
recorded by two cameras. In order to scan the joint surface completely, it was 
necessary to perform several individual measurements, where each single 
measurement generates up to 4 million data points. Circular markers were placed 
on the object, which made it possible to arrange all data points in a global 
coordinate system. The density of the point cloud made it possible to obtain an 
accuracy of ±50 μm of the measured object. 
 

 
 

Figure 5.19 The measurement system ATOS III (Picture from Svensk Verktygsteknik). 
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The scanning was first performed for the upper and lower surfaces of sample S6 
and L7 before the direct shear tests were performed. After that, the upper and 
lower part was put together and scanned one more time. This methodology makes 
it possible to analyse the degree of contact and aperture between the upper and 
lower part of the sample prior to shearing. After the direct shear tests were 
performed, the procedure described above was repeated. By doing so, it was also 
possible to analyse the degree of damage on the surfaces due to shearing.  
 
The data from the laser scanning were used to regenerate the surfaces with a 
resolution of 0.5 by 0.5 mm. It was assumed that this sampling distance 
approximates the grain size scale, i.e. an asperity base length at grain size of 1 
mm. The regeneration of the surfaces and other analyses of the data were made 
with the program MATLAB (MathWorks 2007). Based on the regenerated 
surfaces, parameters for the potential contact area ratio were derived together with 
constants for the scale relation between the asperity heights and the asperity base 
lengths of different sizes. The results from these analyses are presented below. 
However, aperture and surface damage was not investigated in this section. Their 
influence on the peak shear strength for these samples will be discussed in the end 
of this chapter. 
 
Parameters that describe the potential contact areas between the upper and lower 
surfaces of sample S6 and L7 were calculated with the following methodology. 
First, normal vectors for each element, ni, in the 0.5 by 0.5 mm grid were 
generated. Thereafter, the shear direction were defined as a vector, t. Using 
equation 5.3, the contribution for each element inclination to the measured dip 
angle, θi, was calculated. 
 

( ) i
i

i

n t
cos 90

n t
θ

⋅
− =

⋅
       (5.3) 

 
Once they were calculated, they were sorted in descending order and arranged 
into a vector which was plotted on the x-axis. A vector that described the 
cumulative area of the surface based on the 0.5 by 0.5 mm grid was plotted on the 
y-axis. The data from this curve were used for regression analysis in order to 
obtain the following parameters; Ao, maximum potential contact area ratio; θmax, 
maximum measured dip angle; and C which described the concavity of the curve. 
A high value of C corresponds to a high degree of concavity, which in turn 
correspond to a low degree of roughness. Results from the analyses are presented 
in Table 5.9. 
 
Table 5.9 Parameters describing the potential contact area in the shear direction. Direction 
defined as 0o in the positive x-axis direction with 90o in the positive y-axis direction. 

Sample Direction 
(o) Ao C θmax 

(o) r2 θmax/C 

S6 lower 0 0.778 8.76 57.0 0.977 6.5 
S6 upper 180 0.703 4.92 39.5 0.988 8.0 
L7 lower 180 0.321 7.41 65.9 0.813 8.9 
L7 upper 0 0.330 5.23 47.5 0.865 9.1 
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As the data in Table 5.9 show, the maximum potential contact area ratio deviates 
from the anticipated value 0.5. This was mainly due to an inclination of the 
samples, i.e. they were not completely horizontal. According to the analyses, 
sample S6 had an average inclination of 2.8o against the shear direction while 
sample L7 had an average inclination of 2.2o away from the shear direction. Total 
difference between the two samples is about 5o. Another possible source of error 
is the regression analyses. In table 5.9, it can be seen that r2 indicates a 
considerably poorer fit for sample L7 than that for sample S6.  
 
Measured dip angle with respect to the shear direction was plotted in Figure 5.20 
and 5.21. In these figures, the difference in average inclination between samples 
S6 and L7 can be observed. Sample S6 has a larger area where the measured dip 
angle is negative, i.e. a dip against the shear direction. On the other hand, sample 
L7 has a larger area with a positive measured dip angle, i.e. a dip away from the 
shear direction.  
 
The scale relation between asperity heights, hasp, and asperity base lengths, Lasp, 
was determined by calculating the root mean square, Z2, at different sampling 
distances, Δx, over the sample in the shear direction. The sampling distance 
ranged from 0.5 mm up to a length of 10 mm for sample S6 and 20 mm for 
sample L7. The results from the calculations are shown in Table 5.10 and 5.11.  
 
Table 5.10 Measured average asperity heights, hasp, at different asperity base lengths, Lasp, for 
sample S6. 

 Lower part of sample S6 Upper part of sample S6 

Δx 
(mm) 

Lasp 
(mm) Z2 

Average 
dip 

angle (o) 

hasp 
(mm) 

Lasp 
(mm) Z2 

Average 
dip 

angle (o) 

hasp 
(mm) 

0.5 1 0.1549 8.81 0.077 1 0.1644 9.34 0.082 
1.0 2 0.1450 8.25 0.145 2 0.1542 8.77 0.154 
2.0 4 0.1308 7.45 0.262 4 0.1384 7.88 0.277 
5.0 10 0.1090 6.22 0.545 10 0.1130 6.45 0.565 

10.0 20 0.0924 5.28 0.924 20 0.0969 5.53 0.969 
 
Table 5.11 Measured average asperity heights, hasp, at different asperity base lengths, Lasp, for 
sample L7. 

 Lower part of sample L7 Upper part of sample L7 

Δx 
(mm) 

Lasp 
(mm) Z2 

Average 
dip 

angle (o) 

hasp 
(mm) 

Lasp 
(mm) Z2 

Average 
dip 

angle (o) 

hasp 
(mm) 

0.5 1 0.1935 10.95 0.097 1 0.1936 10.95 0.097 
1.0 2 0.1799 10.20 0.180 2 0.1826 10.35 0.183 
2.0 4 0.1612 9.16 0.322 4 0.1649 9.36 0.330 
5.0 10 0.1308 7.45 0.654 10 0.1375 7.83 0.688 

10.0 20 0.1085 6.19 1.085 20 0.1146 6.53 1.146 
20.0 40 0.0903 5.16 1.806 40 0.0926 5.29 1.852 

 
 
 
 
 
 
 



Shear strength of unfilled and rough rock joints in sliding stability analyses of concrete dams 

 102 

 
Figure 5.20 Measured dip angle against the shear direction for the lower part of sample S6 
(Negative dip angles against shear direction). 
 

 
Figure 5.21 Measured dip angle against the shear direction for the lower part of sample L7 
(Negative dip angles against shear direction). 
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In order to determine the constants a and H, which describes the scale relation 
between asperity heights and asperity base lengths, regression analyses on the 
data in the Table 5.9 and 5.10 were performed. The results from these analyses 
are presented in Table 5.12 and Figure 5.22 and 5.23. 
 
Table 5.12 Constants based on regression analyses describing the scale relation between asperity 
base lengths and asperity heights. 

  a H r2 
Lower part 0.080 0.826 0.999 S6 Upper part 0.086 0.819 0.999 
Lower part 0.103 0.789 0.999 L7 Upper part 0.103 0.800 0.998 
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Figure 5.22 Mean asperity heights at different asperity base lengths for sample S6. 
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Figure 5.23 Mean asperity heights at different asperity base lengths for sample L7. 
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5.4.10 Summary and interpretation of results 
 
Due to the uncertainty in the observed peak shear strength in laboratory shear 
tests compared to the peak shear strength for joints in field scale, additional 
laboratory shear tests of larger scales were performed. Totally, fourteen samples 
were prepared and tested, seven with a size of 125 mm by 125 mm and seven with 
a size of 240 mm by 240 mm. The main objective with these new tests was to 
investigate if a scale effect could be seen in the results between these two scales 
for the peak shear strength. In addition, the objective was also to investigate the 
variation on the peak shear strength at these two scales.  
 
In the beginning of this subchapter it was described that an anticipated dilation 
angle of 22.6o and 17.4o were expected for the small and large samples 
respectively. This prediction was based on an average JRC value of 14.2 for the 
drilled core samples combined with Barton-Bandis (1982) empirical equations for 
scale corrections. Prediction on JRC values based on visual inspection of the joint 
surfaces for the 125 by 125 mm samples and the 240 by 240 mm samples 
indicated that the surface was rough and undulated. JRC values in the range of 8 
to 14 could be anticipated. However, pull tests performed prior to shear tests gave 
low JRC values indicating that a dilation angle between 7 to 17o. These low 
dilation angles were also verified in the shear tests. However, the cause for this 
relatively low dilation angle despite the high roughness is unclear and is discussed 
further in Chapter 5.8 “Discussion and interpretation of results”. A summary of 
the results from the shear test performed at LTU are presented in Table 5.13. 
 
Table 5.13 Summary from shear tests at LTU. 

Sample 125 by 125 mm 240 by 240 mm All samples 
 φp 

(o) 
ip  
(o) 

φb,p 
(o) 

φp 
(o) 

ip  
(o) 

φb,p 
(o) 

φp 
(o) 

ip  
(o) 

φb,p 
(o) 

Average 41.0 6.9 34.2 42.9 6.4 36.5 42.0 6.6 35.3 
Std. 3.7 3.7 1.8 2.3 1.9 2.6 3.1 2.9 2.5 
COV 0.09 0.54 0.05 0.05 0.30 0.07 0.07 0.43 0.07 

 
An average peak friction angle of 41.0o were obtained for the 125 by 125 mm 
samples, while an average peak friction angle of 42.9o were obtained for the 240 
by 240 mm samples. The average dilation angle for both of the test series were 
about 7o, with a lower variation for the larger samples. The values in the table 
above shows that no scale effect can be seen for the dilation angle between the 
two series of samples. The average basic friction angle for all tests is 35o, with a 
coefficient of variation of 0.07. As expected, no scale effect could be observed for 
the basic friction angle. 
 
An important aspect when the results should be interpreted is also that they 
contain uncertainties. When the shear tests were analysed it was observed that 
small samples combined with low normal load could result in uncertain values on 
the normal load acting on the sample. In addition to this, optical scanning of the 
surfaces revealed that it was difficult to cast the samples in the steel mould 
completely horizontal. For example, the difference in average inclination between 
sample S6 and L7 was measured to be 5o. All in all this means that care should be 
taken before any conclusions are made. 
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5.5 In situ shear test 

5.5.1 Introduction 
 
Even though the laboratory shear test provided consistent values on the basic 
friction angle, the dilation angle at field scale are uncertain. Therefore, an in situ 
shear test was planned and carried out adjacent to the concrete dam. After the 
shear test was performed, the surfaces of the joint were measured with optical 
scanning in order to determine the thickness of infilling materials and the 
roughness. 
 
The advantages with the in situ shear test, in addition to minimize possible scale 
effects, are that the joint can be tested in undisturbed conditions. By doing so, the 
effect on the peak friction angle from infilling materials such as silt and loose 
pieces of weathered rock are considered. 
 
It should be emphasized that the joint tested in this in situ test contained some 
infilling material, even though it was the author’s intention to study unfilled 
joints. However, the presence of infilling material was detected after the test 
block was created and it was decided to carry out the testing despite this 
undesired condition. 
 

5.5.2 Creation of test block 
 
Before the in situ shear test could be performed it was necessary to find a suitable 
joint to be tested. After a survey of visible outcrops adjacent to the dam, a part of 
it was judged to have been formed by a persistent joint, see Figure 5.24. 
 

 
Figure 5.24 Location of the in situ test site. The test is performed in the white tent to the right, 
with the outcrop formed by the chosen joint to the left. 
 
It was assumed that this joint surface, which had formed the outcrop, continued 
into the rock mass. In order to investigate if this was the case, the rock surface for 
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an area a few meters away was uncovered from overlying soil. Once this was 
done, several vertical cores were drilled by the company SBT, see Figure 5.25. 
The drilling confirmed that a shallow persistent joint existed under the rock 
surface. 
 

 
Figure 5.25 Drilling of vertical cores in order to investigate the extent and inclination of the 
assumed location of the persistent joint. 
 
After the location and inclination of the joint was verified, the test block was 
created by sawing. The dimensions of the block were 700 by 700 mm in 
accordance with the suggestions by ISRM (1981). Before the sawing took place, 
the rock surface was carefully inspected in order to locate possible joints or other 
weaknesses in the intact rock. In addition to the creation of the test block, 
additional rock was removed to create space for the jack that should apply the 
shear force. Also, slits with a width of about 10 centimeters were created around 
the block. A picture of the created test block is shown in Figure 5.26. 
 

 
Figure 5.26 Photo of the created test block.  
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5.5.3 Test set up and procedure for shear test 
 
Before the shear test could be performed, it was necessary to prepare the test site.  
This included the construction of support for the normal and shear loading from 
the jacks. Also, the upper side of the block and the side facing the shear jack had 
to be prepared for the application of forces from the jacks. In addition to this, steel 
plates and pieces of plexiglass had to be fixed for the LVDT´s which measured 
the displacements of the block during the test. A photo over the test site during 
the test can be seen in Figure 5.27. 
 

 
Figure 5.27 Photo of the test site during the shear test. 
 
The support for the normal load from the jack was constructed by first grouting 
three GWS struts with a diameter of 32 mm and a length of two meters into the 
rock. Between the two struts a steel beam was mounted, which consisted of two 
UPE 270 steel profiles which had been welded together. In order to prevent tilting 
of the beam due to eccentric loading, an additional beam was mounted under and 
perpendicular to the one described above, see Figure 5.27. 
 
The support for providing the shear load from the jack was of specific concern. 
The joint continued into the rock but it was uncertain at what shear load the joint 
would slide. To prevent the rock above the joint from sliding, six GWS struts with 
a diameter of 32 mm was grouted one meter into the rock below the joint. After 
that, a concrete support was casted on the rock surface. Finally, each strut was 
pre-stressed to 150 kN. By doing so, shear strength was mobilized in the joint 
which prevented it from sliding. Shear resistance was also mobilized in the 
interface between concrete and rock. 
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On the upper side of the block, for the application of the normal load, a surface 
aligned with the inclination of the joint was first casted with concrete. On this 
concrete surface, a truncated pyramid of concrete was casted. This was done in 
order to spread the normal load on the block. 
 
For the application of the shear load, a concrete heel was casted against the side 
of the block. The side of the concrete heel was aligned in such an angle that the 
line of action from the shear force from the jack went through the middle of the 
joint. Two layers of 10 mm Styrofoam were placed under the concrete heel to 
avoid additional sliding resistance from it.  
 
At the corners of the block, rapid hardening concrete was used to build surfaces 
aligned parallel with the joint surface. On these surfaces, pieces of plexiglass 
were glued. The low friction surface of the plexiglass was used as a sliding 
surface for the steel points of the LVDT´s, which were used to measure the 
displacements of the block. For the same purpose, four pieces of plexiglass was 
glued at the sides of the block. The fixation of the LVDT´s was arranged by using 
attachments of magnets. Several steel plates were therefore fixated with rapid 
hardening concrete on the rock surface surrounding the test block. 
 
The principal components for the test set up and their locations can be seen in 
Figure 5.28 below. 
 

 
 
Figure 5.28 Principal components for the in-situ shear test. 
 
The jack for the normal load had a capacity of 500 kN. Attached to the hydraulic 
system for the jack, in order to keep the normal pressure constant, a compressor 
combined with an air-pressure regulator was used.  
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The jack for application of the shear load was constructed in order to apply a 
constant shear rate. The capacity of the jack was 500 kN. Load cells with a 
capacity of 500 kN were used to measure the applied normal and shear loads. 
 
During the shearing of the block, friction between the block and the jack for the 
normal load was minimized by a sliding layer. The sliding layer was constructed 
by five flat roller cages with a dimension of 30 by 150 mm. The rollers in the 
cages had a diameter of 4 mm. The dynamic and static load capacity for each 
roller cage was 107 and 380 kN respectively. Two hardened steel plates with a 
dimension of 200 by 200 mm and a thickness of 10 mm were used as sliding 
plates. The hardened steel plates had a Rockwell hardness of 60 HRC. To keep 
the cages aligned in the shear direction during the test, a frame was welded and 
fixed to the lower steel plate. A photo of the sliding layer can be seen in Figure 
5.29 below.  
 

 
Figure 5.29 Sliding layer constructed by five flat roller cages and two 10 mm hardened steel 
plates. 
 
For measurements of displacements of the block during the shear test, eight 
LVDT´s were used. The LVDT´s were placed in accordance with the suggestions 
by ISRM (1981). Four were placed at the corners on the upper side of the block 
for measurements of the normal displacement. Two were placed on the side of the 
block in the shear direction and two were placed on the side of the block 
perpendicular to the shear direction for measurement of lateral displacements. In 
addition to these, deformations for the support of the jack for the shear load were 
also measured. The location and numbering of the LVDT´s can be seen in Figure 
5.30. The readings of the displacements were averaged to obtain the mean shear 
and normal displacements. The lateral displacements were mainly recorded in 
order to evaluate the behaviour of the test block during the shear test. 
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For interpretation of the test results, it was necessary to account for the inclination 
of the joint with respect to the applied shear load. Shear and normal stresses, τ and 
σn, were computed as follows: 
 

cosT
A

ατ ⋅
=         (5.4) 

 
sin

n
N T

A
ασ + ⋅

=        (5.5) 

 
where T is the total applied shear force and N is the total normal force. α is the 
inclination angle of the applied shear force to the shear plane and was measured 
to be 12.2o. A is the area of the joint surface for the test block.  
 
A normal load corresponding to a normal stress of 0.5 MPa was initially chosen 
for the test. Together with the additional normal stress component from the jack 
for the shear load, a total normal stress of 0.8 MPa could be anticipated. This 
corresponds to the maximal normal stress under the dam, and it was also a normal 
stress value that was used for the previous performed shear tests at SP and LTU. 
During the test, a constant shearing rate of 0.2 mm/min was used. The dilation 
was calculated with equation 5.1 based on a shear displacement increment equal 
to 0.4 mm.  
 
 
 

SHEAR 
DIRECTION

12. 13.

5.

2.

6.

1.

4.

3.

 
 
 
 
Figure 5.30 Location and identification of the LVDT´s for measurements of the normal, shear and 
lateral displacements of the block. (Measured deformation positive in the direction of the arrows). 
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5.5.4 Results 
 
How the measured normal and shear loads changed during the test can be seen in 
Figure 5.31.  
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Figure 5.31 Measured normal and horizontal shear load during the test (Not corrected for the 
inclination of the block). 
 
Initially, a normal load of 250 kN was planned to be used. However, during the 
test it was observed that the jack for the shear load only had a maximum working 
pressure of 60 bar instead of the expected 100 bar due to a mistake by the 
manufacturer of the jack. This implied that the capacity of the jack was reduced 
from 450 kN down to 270 kN. As a consequence, the normal load had to be 
reduced from 250 kN down to 150 kN in the middle of the test. 
 
In Figure 5.31, it can be seen that the shear load decreased three times, when the 
normal load was decreased to 150 kN. The first time it decreased, the jack was 
stopped, which resulted in a decreased pressure. Thereafter, shear loading was re-
activated and resulted in an increased load. At the second decrease, the jack was 
stopped. However, when the steering mode was switched from automatic to 
manual, a rapid increase of the load occurred. This also resulted in an 
uncontrolled displacement of the block with about 0.8 mm. After that, the load 
was successively decreased in the jack and the shear test could continue with the 
new normal load. 
 
Throughout the shear test, the displacements of the abutment were continuously 
measured. The results from this measurement can be seen in Figure 5.32. As the 
figure shows, a maximum displacement of about 0.5 mm was observed. 
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Figure 5.32 Displacement of the abutment for the shear load (Positive displacement in the shear 
direction). 
 
The total friction angle against shear displacements can be seen in Figure 5.33. 
The total friction angle was defined as the secant between the shear and normal 
forces calculated with equations 5.4 and 5.5. Total friction angle together with 
dilation angle and basic friction angle are presented in Figure 5.34.  
 
Diagram showing the normal displacements can be seen in Figure 5.35, while 
lateral and shear displacements are presented in Figure 5.36. It should be 
observed that LVDT 2 showed stick slip behaviour. Most likely, the point of the 
gauge did not slide properly on the plexiglass. As a consequence, it was excluded 
in the calculation of the dilation angle in Figure 5.34. Instead, LVDT 6 was used 
in its place since it had a similar normal displacement curve. This should be kept 
in mind when the results are interpreted. In addition, an unexplained scatter was 
registered in LVDT 13 during the first three millimetres of shear displacement. 
However, after the reduction of the normal load, this ceased to appear. Due to the 
unexplained scatter in LVDT 13, the first three millimetres of the calculated 
dilation angle in Figure 5.34 was not possible to interpret. A possible source to 
this unexplained scatter might be caused by an incompatible normal load relative 
the stiffness of the supporting frame that might not be high enough. 
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Figure 5.33 Total friction angle –shear displacement diagram. 
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Figure 5.34 Friction angle (stress ratio) – shear displacement diagram. 
 
 
 
 



Shear strength of unfilled and rough rock joints in sliding stability analyses of concrete dams 

 114 

 
 
 
 

-4

-3

-2

-1

0

1

2

3

4

0 5 10 15 20 25

Shear displacement (mm)

N
or

m
al

 d
is

pl
ac

em
en

t (
m

m
)

LVDT 1
LVDT 2
LVDT 5
LVDT 6

 
Figure 5.35 Measured normal displacements – shear displacement diagram. 
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Figure 5.36 Measured shear and lateral displacements - shear displacement diagram. 
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5.5.5 Measurement of surface roughness with optical scanning 
 
After the shear test had been performed, the block was tilted on its side in order to 
investigate the surface roughness and the infilling of the joint. The roughness and 
the thickness of the infilling was measured with optical scanning as previously 
described in Chapter 5.4.9, see Figure 5.37. In order to measure the thickness of 
the infilling, the surface was first measured untouched. After that, the surface was 
cleaned from infilling material and the surface was scanned one more time. Both 
the upper and the lower parts of the surface were scanned.  
 

 
Figure 5.37 Measurement of surface roughness with optical scanning. 
 
A photo which shows the surface of the joint after the block was tilted can be seen 
in Figure 5.38. The photo shows that the joint surface was covered with infilling 
materials, which consisted of soil and weathered rock particles. The white spots in 
the picture are contact points with rock to rock contact. These contact points were 
mainly located to a ridge which passes in the middle of the block perpendicular to 
the shear direction.  
 
The thickness of the infilling is presented in Figure 5.39. The thickness was in 
general only a few millimetres, but was locally up to 30 mm. In the upper side of 
the picture it can be seen that the infilling increased up to 90 mm. This originated 
from a wedge of intact rock. The wedge was formed by two joints, since the joint 
in this area was divided into two parallel joints. Based on visual observations, the 
lower joint under the wedge appeared to be more rough and fresh compared to the 
joint above the wedge, whose roughness coincided better with the main joint.  
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Figure 5.38 Lower part of the untouched joint surface after the upper block has been tilted. 
 
 

 
Figure 5.39 Thickness of infilling material. 
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Values for the parameters describing the potential contact area ratio are presented 
in Table 5.14. Due to the inclination of the joint, a best fit plane of the joint was 
first determined by regression analysis. After that, the parameters were calculated 
according to the technique described in Chapter 5.4.9. Measured dip angles 
against the shear direction are plotted in Figure 5.40.  
 
Table 5.14 Parameters describing the potential contact area ratio. Direction defined as 0o in the 
positive x-axis direction. 

Sample Direction 
(o) Ao C θmax 

(o) r2 θmax/C 

In-situ 
upper 0 0.457 7.76 71.9 0.991 9.3 

In-situ 
lower 180 0.452 8.23 81.7 0.953 10.7 

 

 
Figure 5.40 Measured dip angles against the shear direction for the lower part of the joint surface 
(Negative values indicate potential contact points, shear direction to the left). 
 
The scale relation between asperity heights and asperity base lengths was 
determined by calculating the root mean square, Z2, at different sampling 
distances over the sample in the shear direction. The sampling distances ranged 
from 0.5 mm up to a length of 67 mm for the lower joint surface. For the upper 
part of the joint surface, a maximal sampling distance of 63 mm was used. The 
sampling distance of 0.5 mm, which corresponds to an asperity base length of 1 
mm, was assumed to represent the grain size. The results from the calculation are 
presented in Table 5.15.  
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Table 5.15 Measured average asperity height, hasp, at different asperity base lengths, Lasp, for the 
in situ joint. 

 Lower part of in situ joint Upper part of in situ joint 

Δx 
(mm) 

Lasp 
(mm) Z2 

Average 
dip 

angle (o) 

hasp 
(mm) 

Lasp 
(mm) Z2 

Average 
dip 

angle (o) 

hasp 
(mm) 

0.5 1 0.2129 12.02 0.106 1 0.2721 15.22 0.136 
1.0 2 0.2066 11.67 0.207 2 0.2545 14.28 0.255 
2.0 4 0.1951 11.04 0.390 4 0.2339 13.16 0.468 
5.0 10 0.1682 9.55 0.841 10 0.1933 10.94 0.967 

10.0 20 0.1409 8.02 1.409 20 0.1584 9.00 1.584 
67/63 134 0.0822 4.70 5.507 126 0.0913 5.22 5.752 

 
In order to determine the constants a and H describing the scale relation between 
asperity heights and asperity base lengths, regression analyses on the data in 
Table 5.15 were used. The results from these analyses are presented in Table 5.16. 
 
Table 5.16 Constants based on regression analyses describing the scale relation between asperity 
length and asperity height. 

  a H r2 
Lower part 0.120 0.803 0.996 In-situ 
Upper part 0.150 0.771 0.997 

 
Diagram showing the mean asperity height at different asperity base lengths are 
presented in figure 5.41. 
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Figure 5.41 Measured mean asperity heights at different asperity base lengths.  
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5.5.6 Summary and interpretation of results 
 
An in situ shear test was carried out at the concrete dam site at Långbjörn 
hydropower station. The advantages with these types of tests are that they reduce 
possible scale effects and that the joint could be tested under in situ conditions. 
 
Initially, the shear test was intended to be performed at a normal stress around 0.8 
MPa. However, during the test it was observed that the capacity of the jack that 
applied the shear load unintentionally had been reduced from 450 kN to 270 kN 
by the manufacturer. As a consequence, the normal load was reduced after a shear 
displacement of about 3 mm. The new load that was used throughout the rest of 
the test corresponded to a normal stress of 0.42 MPa. 
 
A peak friction angle of 50.3o was obtained from the test. Unfortunately, a 
completely correct dilation angle was not possible to be calculated since LVDT 2 
exhibited stick slip behaviour. To overcome this problem, LVDT 2 was excluded 
in the calculations of the dilation angle. Instead, LVDT 6 was used in its place 
since it had normal displacements similar to LVDT 2. The results from the 
calculation of the dilation angle showed that the test could be divided into three 
parts. In the first part, which occurred up to a shear displacement of 4 mm, the 
high normal load was used. In the second part, which occurred for a shear 
displacement between 4 mm to 14 mm, the normal load was reduced. The peak 
shear stress occurred at a shear displacement of 6.6 mm. The dilation angle at 
peak shear strength was calculated to be 4.8o. This means that the basic friction 
angle became 45.5o. This value was unexpectedly high. At a shear displacement 
of about 14 mm, a sudden drop of the shear load was registered. This initiated the 
third part of the test, occurring for a shear displacement from 14 mm to 19 mm. In 
this part of the test, the average calculated dilation angle was 8.6o. The average 
basic friction angle became 37.4o, a value that is in line with previously 
performed laboratory shear tests in this chapter.  
 
Regarding the high value on the basic friction angle, it could be discussed if it 
was correct to use a mean value of the normal displacements, which is the current 
practice in shear tests, in order to calculate the dilation angle. In the test, the right 
side of the block showed no negative normal displacement while the left side 
show a clear negative normal displacement. It is possible that the parallel joints 
on the right side reduced the normal displacements on this side. Using a mean 
value on the normal displacements, the dilation angle for the left side will be 
increased by 50% and the dilation angle for the right side will be decreased by 
50%. At the same time, the dilation angle for the left side may constitute a sliding 
resistance for the total block. On the other hand, if this methodology was used, the 
basic friction angle would be about 8.6o lower than 37.4o obtained in the third part 
of the test. 
 
A possible reason for the drop in the shear load at a shear displacement of 14 mm 
could be found if the shear and lateral displacements were studied. It can be seen 
that the block rotated counter clockwise up to a shear displacement of 14 mm. 
After the drop in the shear load, this rotation stopped and only a displacement in 
the shear direction occurred. The stopped rotation might have indicated crushing 
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of an asperity under the left side of the block. Before the crushing of the asperity 
interlocking may have been present and this effect disappeared after the crushing 
of the asperity. 
 
After the shear test was performed, the block was tilted and the surface was 
measured with optical scanning. The scanning was performed two times, before 
and after the infilling material was removed. With this methodology, it was 
possible to measure the thickness of the infilling material.  
 
In general, the infilling material, which consisted of soil and pieces of weathered 
rock, had a thickness of a few millimetres. At some locations the thickness of the 
infilling was up to 30 mm. This infilling also resulted in fewer rock to rock 
contact points. The contact points were mainly concentrated to the ridge present 
in the middle of the sample coinciding with the steepest measured dip angles 
against the shear direction. The area of the contact points ranged from 
approximately 20 mm2 up to about 2000 mm2. 
 
Measurements of the average asperity heights with respect to the asperity base 
lengths showed that the roughness at larger scales could not be characterized as 
completely self-affine. With increased sampling distance, the inclination in the 
log-log diagram decreased. It might be an effect of a non-stationary roughness 
due to the ridge present in the middle of the sample. It could also indicate the 
existence of a stationary threshold for the roughness at larger scale. If a stationary 
threshold exists at a certain scale, it would imply that the scale dependence cease 
to exist at this scale.  
 

5.6 Summary and interpretation of results for all shear tests 

5.6.1 Introduction 
 
Several laboratory and one in situ shear test were performed on samples of rock 
joints from the rock foundation under and adjacent to the concrete dam at 
Långbjörn hydropower station. The tests were performed at different scales 
ranging from 42 to 700 mm. The main objective with these tests was to obtain 
information for estimating the peak shear strength of the persistent horizontal 
relaxation joints which exist in the rock mass under the concrete dam. A second 
objective was to study if a scale effect could be observed on the peak shear 
strength for joints of different sizes. In addition, optical scanning was performed 
on three samples in order to characterize surface roughness. 
 

5.6.2 Summary  
 
A summary of all tests with their peak friction angle at different scales are 
presented in Figure 5.42. If the results in Figure 5.42 are studied, it can be seen 
that results from the drilled cores exhibit a higher peak friction angle than the 
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other tests. On the other hand, total friction angle for the shear test at 125 and 240 
mm scale were lower than that from the in situ shear test. 
 
As previously discussed, the peak shear strength could be divided into a basic 
friction angle and a dilation angle. In Figure 5.43 and 5.44, the basic friction 
angle and the dilation angle respectively were plotted at different scales. In these 
two figures, samples D4, D10, A1 and B3 were excluded since it was not possible 
to correctly calculate the dilation angle. For the in situ test, the dilation angle and 
the basic friction angle were determined and showed in Figure 5.43 and 5.44 at 
two different shear displacements, i.e. at the peak friction angle and at the residual 
friction angle.  
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Figure 5.42 Peak friction angle for the shear tests at different sample scale. 
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Figure 5.43 Measured basic friction angles at peak shear strength for different sample lengths. 
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Figure 5.44 Measured dilation angles at different sample lengths. 
 
The results in Figure 5.43 point out that the basic friction angle could be 
considered constant and not scale dependent. From Figure 5.44 it can be seen that 
variations in the peak shear strength mainly appears to originate from changes in 
the dilation angle. In Table 5.17 and 5.18, average values, standard deviations and 
coefficient of variations are presented for the tests at different scales. 
 
Table 5.17 Average value, standard deviation and coefficient of variation for the basic friction 
angle for the different test series. 
 Drillcores LTU 

125 by 125 mm 
LTU 

240 by 240 mm In situ Total 

n 3 7 7 1 18 
Average 34.9 35.8 36.5 45.5 36.4 
Stdev. 6.6 3.8 2.6 - 4.3 
COV 0.19 0.11 0.07 - 0.12 

 
Table 5.18 Average value, standard deviation and coefficient of variation for the dilation angle for 
the different test series. 
 Drillcores LTU 

125 by 125 mm 
LTU 

240 by 240 mm In situ 

n 3 7 7 1 
Average 31.4 6.9 6.4 4.8 
Stdev. 2.0 3.7 1.9 - 
COV 0.06 0.54 0.30 - 

 
As the values in Table 5.17 shows, the mean value of the basic friction angle is 
around 36o. The coefficient of variation is about 0.1 for this parameter.  
 
The dilation angle was more difficult to interpret. At drilled core scale, the 
coefficient of variation is only 0.06. However, only three tests were performed at 
this scale. If the other four tests performed by KTH were included, and a basic 
friction angle of 36.4o was assumed, the coefficient of variation increased to 0.18 
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and the standard deviation increased to 5.4. With these new values for the drilled 
cores, together with the test performed at LTU, a trend against a decreasing 
standard deviation with increasing scale was seen for the dilation angle. This 
could be interpreted as a result from an averaging process for the contacting 
asperities with increased scale. On the other hand, it should be observed that if the 
dilation angle decreases, the coefficient of variation will increase. It is therefore 
important to consider the magnitude of the dilation angle in combination with the 
coefficient of variation. 
 
The differences in surface damage and infilling materials for the joint samples 
tested in this chapter makes any statement regarding a possible scale effect 
uncertain. However, it can be concluded that shear tests at the drilled core scale 
resulted in total friction angles considerably higher than the other larger samples. 
It can also be concluded that changes in the total friction angle mainly originate 
from changes in the dilation angle and that the basic friction angle appears to be 
constant and independent of scale. 
 

5.6.3 Implementation of conceptual model 
 
For three of the samples, S6, L7 and the in situ sample, optical scanning of the 
joints was performed for characterization of surface roughness. Based on data 
from the optical scanning, parameters were derived which made it possible to 
apply the conceptual model for these three samples. 
 
Input data for these calculations are presented in Table 5.19 and are based on the 
results from the shear test described previously in the chapter. The parameters 
used in the calculations that describe the roughness were taken from the lower 
part of the sample. The matedness constant, k, was varied. 
 
Table 5.19 Input data for calculations of total friction angle with conceptual model. 

Sample S6 L7 In situ 
φb [o] 36.4 36.4 36.4 
σn [MPa] 0.98 0.90 0.42 
σci [MPa] 140 140 140 
Lg [mm] 1 1 1 
Ao 0.778 0.321 0.457 
C 8.76 7.41 7.76 
θmax 57.0 65.9 71.9 
H 0.826 0.789 0.803 

 
Total friction angle was calculated with equation 4.27 and dilation angle was 
calculated using equation 4.36. The results are presented in Figure 5.45 to 5.47.  
 
The results show that the observed total friction angle for sample S6 and L7 are 
smaller than what could be anticipated for a maximal unmated joint, i.e. k>1. For 
the in situ joint, the observed total friction angle corresponds to a k=0.7. It can 
also be observed that at the drilled core scale, i.e. 40 to 60 mm, the conceptual 
model predicts total friction angles in the range of 50 to 70o. These values agree 
well with the observed total friction angle from tests performed on drilled cores. 
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Figure 5.45 Calculated total friction angles for sample S6 for different values of k compared with 
measured value from shear test. 
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Figure 5.46 Calculated total friction angles for sample L7 for different values of k compared with 
measured value from shear test. 
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Figure 5.47 Calculated total friction angles for in situ sample for different values of k compared 
with measured value from shear test. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Shear strength of unfilled and rough rock joints in sliding stability analyses of concrete dams 

 126 

5.6.4 Analyses on the distribution of contact points for sample S6 
and L7 

 
As shown in the previous Figures 5.45 to 5.47, the measured dilation angles for 
the shear tests performed at LTU were unexpectedly low. The values were lower 
than the conceptual model predicted for a maximal unmated joint. In order to 
investigate the cause for these unexpectedly low values; the data from the optical 
scanning of sample S6 and L7 were used to study aperture at rest and surface 
damage after the shear test were performed. 
 
First, the aperture at rest was determined based on the data from the optical 
scanning, i.e. before the shear test. The results are presented in Figure 5.48 and 
5.49. As the results in the figures shows, the aperture varies from 0 up to about 
3.5 mm for sample S6 and from 0 up to about 5 mm for sample L7. In the figures, 
red spots are areas close to contact under normal load equal to the dead weight of 
the sample. These figures indicate a poor initial matedness of the samples. 
 
After that, differences in surface height before and after the shear test were 
calculated for the upper and lower parts of the samples. The total differences with 
changes larger than 0.1 mm were added together for the lower and the upper parts 
of the sample and plotted. The results are shown in Figure 5.50 and 5.52. The 
measured dip angles against the shear direction larger than 7o were plotted in 
Figure 5.51 and 5.53. If the locations of the damaged zones are compared with the 
zones for the potential contact areas, it can be observed that a perfect correlation 
does not exist between actual damages areas and predicted contact areas. This 
implies that the dilation angle did not originate from the steepest inclined 
asperities as it was assumed in the conceptual model. Instead, the contact points 
appeared to be more randomly distributed depending on the initial points of 
contact at rest. As a consequence, the dilation angles become smaller than those 
that would originate from the steepest inclined asperities on the sample. This 
indicates that it might be necessary to distinguish between undamaged and 
damaged joints, since the mechanism that governs the distribution and density of 
the contact points could be different. 
 
The results from the in situ test might further support this idea. Even though the 
joint has some infilling materials, results indicates that the joint is more 
undamaged than sample S6 and L7. Contact points shown as white spots in Figure 
5.38 are located on the steepest asperities facing the shear direction in Figure 
5.40. This might explain why the total friction angle calculated with the 
conceptual model agrees better for the in situ shear test than for sample S6 and 
L7.  
 
Whether the steepest asperities facing the shear direction come into contact, or if 
a more random distribution of the asperities at contact occur, is important in order 
to understand the origin of the dilation angle. The three test cases analysed here 
indicate that both of these distributions could be possible depending on initial 
surface damage. Further studies are required to analyse the effect from surface 
damage on the distribution of the contact points before this could be verified. 
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Figure 5.48 Aperture at rest for sample S6 before direct shear testing. 

 

 
Figure 5.49 Aperture at rest for sample L7 before direct shear testing. 
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Fig 5.50 Differences in surface height for sample S6 before and after the shear test. 
 

 
Fig 5.51 Potential contact areas with measured dip angles larger than 7o for sample S6. 
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Fig 5.52 Differences in surface height for sample L7 before and after the shear test. 
 

 
Fig 5.53 Predicted contact areas with measured dip angles larger than 7o for sample L7. 
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5.6.5 Discussion on the potential contact area ratio for different 
sampling distances 

 
In Chapter 4, a discussion was presented on how the potential contact area ratio 
changes with increasing scale for a constant sampling distance. According to the 
assumptions made in the conceptual model, the potential contact area ratio should, 
in principle, remain unchanged. To study if this is the case, the potential contact 
area ratio was determined for the lower surface of the in situ sample at four 
different scales. The results are presented in Figure 5.54. 
 

 
Figure 5.54 Potential contact area ratios for the lower surface of the in situ sample at four 
different scales, sampling distance was held constant at 0.5 mm. 
 
As shown by the results, the potential contact area ratio are in principle constant 
for different sizes of the joint surface if the sampling distance is constant. These 
results support the assumption made in Chapter 4. 
 

5.6.6 Discussion on the matedness constant 
 
In the previous calculations, the value on the constant k was varied. However, no 
discussion was held regarding how it could be estimated. 
 
According to the conceptual model in Chapter 4, k is a constant that describes the 
degree of matedness for a joint. In Figure 4.11, the difference between a perfectly 
mated joint and an unmated joint is described as an effect from a relative shear 
displacement between the upper and the lower joint surface. Following the 
assumption from Chapter 4, the shear displacement could be assumed to range 
from half of the grain size scale to half of the sample length for a perfectly mated 
and a maximal unmated joint respectively. Under these assumptions, and by using 
equation 4.31, the relation between k and the shear displacement at peak shear 
strength, δs,p, could be expressed as: 
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s,p s,min

s,max s,min

log log
log log

k
δ δ
δ δ

−
=

−
      (5.6) 

 
Based on the assumption illustrated in Figure 4.11, which illustrates that shear 
displacements are associated with asperity base lengths, it can be assumed that 
δs,min for a perfectly mated joint is equal to Lg/2 and δs,max for a maximal unmated 
joint is equal to Ln/2. 
 
With equation 5.6 and the assumptions that δs,min= Lg/2 and δs,max= Ln/2, values on 
k for different shear displacements at peak shear strength, δs,p, were calculated 
according to Figure 5.55. 
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Figure 5.55 Calculated values on k for different peak shear displacements, δs,p.  
 
The relation between k and δs,p shown in the figure illustrates that k is sensitive to 
small changes of relative shear displacement with respect to the grain scale. 
However, if this relation is used and compared against results from shear tests, it 
should be emphasized that observed δs,p in shear test is not necessarily equal to 
the true shear displacement of the joint. Any displacements that occurred prior to 
the start of the shear test are not included. It is therefore possible to underestimate 
the value of k if observed δs,p from shear test are used in equation 5.6. 
 
Other sources of uncertainty are also the assumptions that the maximal asperity 
length of the joint, Lasp,max equals the sample length or that the grain size, Lg, 
equals 1 mm. It is possible that the maximal asperity base length is smaller than 
the sample length. If so, the value on k increases for a specific shear displacement 
at peak shear strength. 
 
Observed shear displacements at peak shear strength for sample S6, L7 and the in 
situ sample was used to estimate values on k with equation 5.6. Total friction 
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angles were calculated with the data in Table 5.19, together with calculated values 
on k by using equation 5.6. The results are presented in Table 5.20. 
 
Table 5.20 Calculated values on k based on shear displacement at peak shear strength, δs,p 
together with total friction angles calculated with conceptual model and from shear tests.  

Sample S6 L7 In situ 
δs,p [mm] 3.2 2.2 6.6 
k (Eq. 5.6) 0.39 0.27 0.39 
φp (Eq. 4.27+4.36) 53.5 56.2 57.1 
φp (From shear tests) 44.6 42.4 50.3 

 
As shown by the results in Table 5.20, the conceptual model predicted total 
friction angles higher than observed for sample S6 and L7. This might partly be 
an effect of too low values on k, and it might partly be an effect of that asperity 
inclinations at contact were not associated with the steepest ones facing the shear 
direction on the samples S6 and L7. Furthermore, the infilling material present in 
the joint for the in situ sample might have reduced the total friction angle in the 
shear test. 
 
Even if equation 5.6 underestimate the value on k for samples S6, L7 and the  
in situ sample, it is showing an important conceptual mechanism, that is the rapid 
decrease of the matedness constant for small relative shear displacements. 
 

5.7 Conclusions 
 
Laboratory and an in situ shear test were performed on samples taken from the 
rock foundation of Långbjörn concrete dam. All in all, 22 shear tests of different 
scales were analysed, seven in drill core scale (40 and 60 mm), seven in 125 by 
125 mm scale, seven in 240 by 240 mm scale, and one in situ shear test at 700 by 
700 mm scale. 
 
The results show that: (1) the peak friction angle could be expressed as the sum of 
a basic friction angle and a dilation angle as initially proposed by Patton (1966). 
(2) The basic friction angle appears to be independent of scale which is in line 
with results by, for example, Barton and Choubey (1977). (3) Changes in the total 
friction angle for different joint sizes in hard rocks mainly originate from changes 
in the dilation angle as suggested by Papaliangas (1996). (4) A possible scale 
effect on the dilation angle could be observed since shear tests in the smallest 
scale gave considerably higher values than the other larger samples. However, the 
magnitude of this effect is uncertain due to differences in joint surface 
characteristics. (5) Before the conceptual model could be used in design, further 
studies are required. In particular, it is recommended that these studies focus on 
the distribution of contact points for damaged and undamaged surfaces, i.e. 
weathered and unweathered surfaces, with respect to the inclination of the 
asperities.  
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6 DISCUSSION ON DETERMINISTIC AND RELIABILITY BASED 
METHODS IN SLIDING STABILITY ANALYSES 

6.1 Introduction 
 
During the past few years, there has been a discussion in Sweden about the 
implementation of reliability based methods in geotechnical and dam design, 
especially after the implementation of Eurocode. However, the use of 
probabilistic concepts is not new in these areas. For example, Höeg and Murarka 
(1974) presented an example where they designed a retaining wall with both 
deterministic and probabilistic methods in order to encourage the use of 
probabilistic methods in geotechnical engineering. Studies of the application for 
reliability based analyses with respect to sliding stability have been performed on 
Swedish concrete dams by Jeppsson (2003) and Westberg (2007). Their results 
showed that the shear strength of the interface between concrete and rock were 
the most important variable for the reliability of the dams.  
 
In this chapter, deterministic and reliability based analyses are carried out for a 
concrete monolith at Långbjörn hydropower station. Based on the results from 
sliding stability analyses, the two methods are compared and discussed. At the 
end of the chapter, conclusions are presented. It should be emphasized that this 
chapter primarily intends to bring focus on some key questions regarding 
reliability based design and sliding stability analyses in rock foundations. By 
doing so, areas for further studies in the subject are identified. Furthermore, it 
should be observed that the calculated safety of the monolith in this chapter does 
not necessarily reflect the actual safety of the dam. 
 
The analyses performed here are similar to those performed by Jeppsson (2003) 
and Westberg (2007). However, the analyses performed in this chapter focus on 
the sliding stability in a shallow persistent joint assumed to exists in the rock 
mass. The friction angle for this joint is based on the results from the conceptual 
model presented in Chapter four and the performed shear tests described in 
Chapter five.  
 

6.2 The analysed monolith 
 
The study was performed on a monolith in the spillway section of the concrete 
dam at Långbjörn hydropower station. The monolith for column three, which was 
analysed in this chapter, can be seen in Figure 6.1.  
 
A normal load case was analysed with closed gates and ice load. A horizontal 
persistent joint was assumed to exist three meters below the rock surface, together 
with a vertical tension crack in the rock mass at the upstream face of the dam. No 
consideration was taken to a possible passive rock wedge at the downstream side 
of the dam. 
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Figure 6.1 Photo of the spillway at Långbjörn concrete dam. The monolith for column 3, analysed 
in this chapter, is the second one from the right side in the picture.  
 
In 2006, several of the monoliths at the concrete dam were reinforced with pre-
stressed anchor cables. Each cable were pre-stressed with 2 160 kN and inclined 
70o upstream with respect to the horizontal plane. The monolith for column three 
was reinforced with ten pre-stressed anchor cables adding a total vertical load of 
18 706 kN and a horizontal load of 10 800 kN directed upstream.  
 

6.3 Estimation of shear strength  

6.3.1 Basic friction angle 
 
According to the results from the shear tests, the basic friction angle varied 
between 29.5 to 45.5o. Mean value of all eighteen tests was 36.4o. The highest 
value originated from the in situ shear test. If the in situ shear test was excluded, 
the mean value became 35.9o, with a minimum value of 29.5o and a maximum 
value of 43.5o. In these analyses, a mean value of 36o was used together with two 
different coefficients of variations equal to 0.07 and 0.10.  
 
Normal distributions were assumed for the basic friction angle. Figures showing 
the assumed distributions for the basic friction angle can be seen in Appendix C. 
 

6.3.2 Dilation angle 
 
The dilation angle was estimated with the conceptual model in Chapter four, 
together with data from the optical scanning of the three samples previously 
described. 
 
Normal stress in the calculations was set to 0.8 MPa, which was the calculated 
maximal stress under the dam (SWECO VBB VIAK 2002). The dilation angle at 
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grain size scale was calculated with equation 4.32. Input data and results are 
presented in Table 6.1. 
 
Table 6.1 Input data and calculated dilation angle at grain size scale. 

Sample S6 L7 In-situ 
σn [MPa] 0.8 0.8 0.8 
σci [MPa] 140 140 140 
Ao 0.778 0.321 0.457 
C 8.76 7.41 7.76 
Θ*max 57.0 65.9 71.9 
Calculated ig [o] 25 28 31 

 
The results in Table 6.1 show that ig vary between 25 and 31o. Furthermore, 
results in the previous chapter indicated that k could be assumed to vary between 
0.5 and 1.0, and the Hurst exponent could be assumed to vary between 0.77 to 
0.83. By using equation 4.36, with Lg=1 mm and Ln=30 000 mm, different values 
on the dilation angle, in, at a size of 30 m were calculated. The results are 
presented in Table 6.2. 
 
Table 6.2 Calculated values on the dilation angle. 

k ig [o] H in [o] 
0.77 8 
0.80 9 25 
0.83 10 
0.77 9 
0.80 10 28 
0.83 12 
0.77 9 
0.80 11 

0.5 

31 
0.83 13 
0.77 5 
0.80 6 25 
0.83 7 
0.77 5 
0.80 7 28 
0.83 8 
0.77 6 
0.80 7 

0.7 

31 
0.83 9 
0.77 2 
0.80 3 25 
0.83 4 
0.77 3 
0.80 4 28 
0.83 5 
0.77 3 
0.80 4 

1.0 

31 
0.83 5 

 
The results in Table 6.2 show that the dilation angle might range from 2 up to 13o. 
These results indicate a possible mean value equal to about 7o. However, it could 
be assumed that the joints under the dam are less weathered than the LTU 
samples and have less infilling than the in situ sample. Therefore, a slightly higher 
mean value on the dilation angle equal to 9o was assumed together with two 
different coefficients of variations equal to 0.15 and 0.30. 
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Normal distributions were assumed for the dilation angle. Figures showing the 
assumed distributions for the dilation angle can be seen in Appendix D. 
 

6.4 Input data 
 
An illustration showing the layout of the monolith and the forces with their 
notations are presented in Figure 6.2. 
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Figure 6.2 Illustration of the monolith with major forces and their notations. 
 
In addition to the basic friction angle and the dilation angle, three additional 
variables were chosen to be non-deterministic. These were the measured pore 
pressure ten meters downstream the upstream face, the unit weight of the concrete 
and the unit weight of the rock mass. These variables were assumed to be normal 
distributed. 
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Under the spillway, pore pressures were measured three to five meters under the 
rock surface at five locations ten meters downstream the upstream face. 
Measurements were performed from June 2006. This means that only a limited 
period of measurements is available. Since the target safety index is expressed in 
terms of a reference period of one year, maximum measured pore pressure for 
each year should be used to obtain the mean and standard deviation of it. Due to 
the short period of measurements, the maximum measured value under the 
monolith was used as a mean value. A COV=0.15 was assumed in the reliability 
analysis. The uplift pressure was assumed to vary according to Figure 6.2 and can 
be considered to be conservative. 
 
The coefficient of variation for the unit weight of the concrete and the rock mass 
was assumed to be 0.04. 
 
Input data for all parameters are presented in Table 6.3. 
 
Table 6.3 Input data for the calculations. 

Description Denotation μ COV σ 
Unit weight of water γw [kN/m3] 9.81 - - 
Unit weight concrete γc [kN/m3] 23.54 0.04 0.94 
Volume concrete Vc [m3] 4316 - - 
Unit weight rock mass γm [kN/m3] 26.00 0.04 1.04 
Volume rock mass Vm [m3] 1802 - - 
Total horizontal water load Wh [kN] 96413 - - 
Total vertical water load Wv [kN] 8858 - - 
Iceload I [kN] 3640 - - 
Pre-stressed anchor cables P [kN] 21600 - - 
Upstream water height hu [m] 33.0   
Measured pressure head hm [m] 6.2 0.15 0.93 
Downstream water height hd [m] 3.0   
Length u.s. face to pressure measurement L1 [m] 10.0   
Length d.s. face to pressure measurement L2 [m] 23.0   
Width of block Lwidth [m] 18.2   

Basic friction angle φb [o] 36 0.07/ 
0.10 

2.52/ 
3.60 

Dilation angle i [o] 9 0.15/ 
0.30 

1.35/ 
2.70 

 

6.5 Deterministic analyses 
 
According to the present Swedish guidelines (RIDAS 2008), the safety against 
sliding should be evaluated by calculating the coefficient of friction, μ, defined as: 
 

all´
H
V

μ μ= ≤∑
∑

       (6.1) 

 
where ΣH is the sum of the loads parallel to the sliding plane and ΣV´ is the sum 
of the loads vertical to the sliding plane. According to RIDAS (2008), the 
coefficient of friction should be lower than 0.75 for a normal load case. 
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The factor of safety, SF, was calculated according to equation 6.2:  
 

( )btanV i
FS

H
φ′ ⋅ +

= ∑
∑

      (6.2) 

 
According to RIDAS, the factor of safety should be at least 1.35 for a normal load 
case. 
 
A summary of all vertical and horizontal loads is given in Table 6.4. The values in 
the table are based on the mean values of the variables. 
 
Table 6.4 Summary of vertical and horizontal loads. 

Description Denotation 
V 

(kN) 
H 

(kN) 
Self weight concrete Vb 101602  
Self weight rock mass Vm 47748  
Vertical water load Wv 8858  
Horizontal water load Wh  96413 
Ice load I  3640 
Uplift pressure U -53883  
 Σ: 104325 100053 
Pre-stressed anchor cables L 18706 -10800 
 Σ: 123031 89253 

 
Coefficients of friction and factors of safety for the case with and without pre-
stressed anchor cables were calculated using equation 6.1 and 6.2. The results are 
presented in Table 6.5. 
 
Table 6.5 Calculated coefficients of friction and factors of safety. 

 μ FS 
Without pre-stressed 
anchor cables 0.96 1.04 

With pre-stressed 
anchor cables 0.72 1.38 

 

6.6 Theory of reliability based design 
 
The method used in this chapter to calculate the probability of failure is FORM, 
First Order Reliability Method. A brief description of the theory behind this type 
of calculations is presented below. The theory behind the method can be found in 
literature such as Melchers (1999) among others.  
 
As described previously in Chapter 2, the probability of failure can be expressed 
as: 
 

[ ]0≤−= SRpp f        (6.3) 
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where, R and S are described by a known probability density function. It can also 
be expressed according to equation 6.4. The safety margin M=R-S can be used to 
express the probability of failure as: 
 

[ ]0≤= Mpp f        (6.4) 
 
If the capacity, R, and the load, S, is normal distributed and independent variables, 
M will also be normal distributed since M is a linear function of R and S. 
Therefore, the mean value of M can be expressed as: 
 

M R Sμ μ μ= −         (6.5) 
 
where μM, μR and μS is the mean value of the safety margin, the resistance and the 
load respectively. The standard deviation of M will be: 
 

2 2
M R Sσ σ σ= +        (6.6) 

 
With this information the probability of failure can be expressed as: 
 

M
f

M

0p μ
σ

⎛ ⎞−
= Φ⎜ ⎟

⎝ ⎠
       (6.7) 

 
where Ф is the standard normal distribution.  
 
The probability of a structure can be expressed with the safety index, β. The 
safety index expresses how many standard deviations that μM exceeds zero. In 
other words, the safety index, β, can be defined as: 
 

M

M

μβ
σ

=         (6.8) 

 
From equation 6.7 and 6.8, the probability of failure can be written as: 
 

( )fp β= Φ −         (6.9) 
 
Hence, the safety index can be expressed as the inverse of the standard normal 
distribution for a given probability of failure. 
 
The calculation of the safety index for a structure can be performed with the 
method presented by Hasofer and Lind (1974), i.e. FORM. In this method, each 
variable, Xi, is first normalized with a mean, μXi, and standard deviation, σXi. By 
doing so, the normalized variables, Zi, can be expressed as: 
 

X

X

i i
i

i

XZ μ
σ
−

=         (6.10) 
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It should be observed that with this definition, μXi=0 and σXi =1. The new set of 
normalized variables can be used to express the performance function as: 
 
( )1 2, ,..., 0nf Z Z Z =        (6.11) 

 
The function above results in a failure surface in the z-coordinate system. The 
shortest distance from origo, O, to the performance function is to a point called 
the design point, D. In mathematical terms, the shortest distance is expressed as: 
 

1
2

2

1

min
n

i
i

Zβ
=

⎛ ⎞= ⎜ ⎟
⎝ ⎠
∑        (6.12) 

 
The unit vector of OD can be expressed in terms of the sensitivity coefficients αi 
asβα . The sensitivity factors are calculated according to equation 6.13: 
 

( )

( )
1
22

1

i
i

n

k k

f
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f
Z
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α
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=
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−
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=
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∑

      (6.13) 

 
where βαi,…, βαn are the coordinates of the design point, D. 
 
The sensitivity factors calculated according to equation 6.13 can be used to 
calculate partial coefficients for each variable according to equation 2.7.  
 
The strength with the method described above is that all variables do not have to 
be normal distributed. Instead, any arbitrary distribution function can be 
transformed into an equivalent normal distribution. With many basic variables in 
the problem, analytical calculations tend to be quite tedious. As a consequence, 
the program COMREL (RCP 2008) was used for the calculations presented in this 
study. 

6.7 Reliability requirements 
 
Swedish dams are designed according to the concept of a coefficient of friction or 
a safety factor. In addition to this, the dam owner also has a strict responsibility 
for the dam according to the plan and building law, PBL. As a consequence, no 
target safety index has been recommended for Swedish dams. 
 
However, as pointed out by Jeppsson (2003), reference is made in RIDAS (2008) 
to BBK 94 (Boverket 1995) and it would therefore seem logical to relate the 
safety system to BKR (Boverket 2003). The Swedish design guidelines, BKR 
(Boverket 2003) relate different types of structures to different safety classes. The 
highest safety class, 3, is used when collapse involve a high risk of personal 
injury, or when the properties of the structure are such that failure would cause 
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immediate collapse. In Table 6.6, target safety index from BKR (Boverket 2003) 
at different safety classes are presented. 
 
Table 6.6 Target safety index from BKR (Boverket 2003). 

Safety Class 
βt  

(one year 
reference period) 

1 3.7 
2 4.3 
3 4.8 

 
The recommendations in RIDAS (2008) suggest that all dams should be classified 
into a consequence class, depending on the consequences if failure occurs. Lower 
hazard dams are classified into class 2 and 3, while higher hazard dams are 
classified into class 1A and 1B. Roughly, the values in Table 6.6 could be 
assumed to correspond with reasonable demands for Swedish dams in the 
different consequence classes. Where consequence class 2 respectively 1B would 
correspond with a target safety index of 3.6 and 4.3 respectively. Dams in the 
highest consequence class, 1A, could in other words be assumed to have a target 
safety index around 4.8. The concrete dam at Långbjörn is classified as a class 1A 
dam. The corresponding target safety index would therefore be 4.8.  
 
However, it should also be observed that the consequence classes used by RIDAS 
are not correlated with the safety classes in BKR (2003). For a more 
comprehensive description of recommended target safety index in different 
structural codes, see for example Westberg (2007). 
 

6.8 Reliability analyses 
 
The limit state function for sliding of column three could be expressed as: 
 

( )tan sin 30 0bV i L Hφ′⋅ + + ⋅ − =∑ ∑     (6.14) 
 
where 
 

hH W I= +∑         (6.15) 
 

c m m m v cos30V V V W U Lγ γ′ = ⋅ + ⋅ + − + ⋅∑     (6.16) 
 
and 
 

( ) ( )( )u m m d width w0.5 1 0.5 2U L h h L h h L γ= ⋅ ⋅ + + ⋅ ⋅ + ⋅ ⋅   (6.17) 
 
Description and input data for the variables are given in Table 6.3.  
 
Results from the calculations with normal distributed variables are given in Table 
6.7-6.12. 
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Table 6.7 Calculated β-index for the case without pre-stressed anchor cables. Basic friction angle 
and dilation angle assumed independent and normal distributed. 

Without pre-stressed anchor cables 
Basic friction angle 

φb (o) 
Dilation angle 

i (o) 
μ COV σ μ COV σ 

Calculated 
β 

0.07 2.52 0.15 1.35 0.13 
0.07 2.52 0.30 2.70 0.11 
0.10 3.60 0.15 1.35 0.10 36 

0.10 3.60 

9 

0.30 2.70 0.09 
Table 6.8 Sensitivity factors for the case without pre-stressed anchor cables. Basic friction angle 
and dilation angle assumed independent and normal distributed. 

Without pre-stressed anchor cables 
Basic friction angle

φb (o) 
Dilation angle 

i (o) 
μ COV σ μ COV σ 

αρb αρm αhm αφ αi 

0.07 2.52 0.15 1.35 -0.35 -0.17 0.24 -0.78 -0.42 
0.07 2.52 0.30 2.70 -0.28 -0.13 0.19 -0.63 -0.68 
0.10 3.60 0.15 1.35 -0.27 -0.13 0.19 -0.87 -0.33 36 

0.10 3.60 

9 

0.30 2.70 -0.24 -0.11 0.16 -0.76 -0.57 
 
Table 6.9 Partial factors for the case without pre-stressed anchor cables. Basic friction angle and 
dilation angle assumed independent and normal distributed. 

Without pre-stressed anchor cables 
Basic friction angle

φb (o) 
Dilation angle 

i (o) 
μ COV σ μ COV σ 

γρb γρm γhm γφ γi 

0.07 2.52 0.15 1.35 1.07 1.03 0.85 1.36 1.16 
0.07 2.52 0.30 2.70 1.06 1.03 0.88 1.27 1.30 
0.10 3.60 0.15 1.35 1.05 1.03 0.88 1.72 1.19 36 

0.10 3.60 

9 

0.30 2.70 1.05 1.02 0.90 1.57 1.38 
 
Table 6.10 Calculated β-index for the case with pre-stressed anchor cables. Basic friction angle 
and dilation angle assumed independent and normal distributed. 

With pre-stressed anchor cables 
Basic friction angle 

φb (o) 
Dilation angle 

i (o) 
μ COV σ μ COV σ 

Calculated 
β 

0.07 2.52 0.15 1.35 2.71 
0.07 2.52 0.30 2.70 2.17 
0.10 3.60 0.15 1.35 2.09 36 

0.10 3.60 

9 

0.30 2.70 1.81 
 
Table 6.11 Sensitivity factors for the case without pre-stressed anchor cables. Basic friction angle 
and dilation angle assumed independent and normal distributed. 

With pre-stressed anchor cables 
Basic friction angle

φb (o) 
Dilation angle 

i (o) 
μ COV σ μ COV σ 

αρb αρm αhm αφ αi 

0.07 2.52 0.15 1.35 -0.31 -0.15 0.21 -0.81 -0.43 
0.07 2.52 0.30 2.70 -0.24 -0.11 0.17 -0.65 -0.69 
0.10 3.60 0.15 1.35 -0.23 -0.11 0.16 -0.89 -0.33 36 

0.10 3.60 

9 

0.30 2.70 -0.20 -0.09 0.14 -0.77 -0.58 
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Table 6.12 Partial factors for the case without pre-stressed anchor cables. Basic friction angle 
and dilation angle assumed independent and normal distributed. 

With pre-stressed anchor cables 
Basic friction angle 

φb (o) 
Dilation angle 

i (o) 
μ COV σ μ COV σ 

γρb γρm γhm γφ γi 

0.07 2.52 0.15 1.35 1.06 1.03 0.87 1.37 1.17 
0.07 2.52 0.30 2.70 1.05 1.02 0.89 1.28 1.30 
0.10 3.60 0.15 1.35 1.05 1.02 0.90 1.75 1.19 36 

0.10 3.60 

9 

0.30 2.70 1.04 1.02 0.91 1.59 1.39 
 
In order to illustrate the results more clearly the COV for the total friction angle, 
i.e. the sum of the basic friction angle and the dilation angle, has been 
approximated. The approximation of the COV for the total friction angle has been 
performed as follows. The mean and variance for the sum of the basic friction 
angle and the dilation angle can, under the assumption that they are independent 
and normal distributed, be expressed as: 
 

b n,tot iφ φμ μ μ= +        (6.18) 
 

tot b

2 2
iφ φσ σ σ= +        (6.19) 

 
Since the density function of tan(φb+i) is unknown, a first order approximation of 
the mean and variance can be performed to estimate it, see for example (Ang & 
Tang 1975). By doing so, the mean and variance of the total friction angle, φtot, 
can be approximated as: 
 

( )b n

tot

2

2 2
,tot 2

1
cosiφ φ

φ

σ σ σ
μ

⎛ ⎞
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⎝ ⎠
     (6.20) 

 
( )b n,tot tan iφ φμ μ μ= +        (6.21) 

 
The coefficient of variation for the total friction angle can thereby be expressed 
as: 
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    (6.22) 

 
Based on this approximation, calculated safety indexes and the product of the 
partial coefficients for the basic friction angle and the dilation angle have been 
plotted against the COV for the total friction angle, see Figure 6.3 and 6.4. 
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Figure 6.3 Calculated safety indexes against the coefficient of variation for the total friction 
angle. 
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Figure 6.4 Product of partial coefficients for basic friction angle and dilation angle against the 
coefficient of variation for the total friction angle. 
 
 
 
 



Chapter 6 Discussion on deterministic and reliability based methods in sliding stability analyses 

 145

6.9 Summary and discussion  
 
In this chapter, the sliding stability for a monolith in the spillway section of 
Långbjörn concrete dam under a normal load case was studied. The safety against 
sliding was calculated both with deterministic methods, i.e. in terms of a 
coefficient of friction and a safety factor, and with a reliability based method, 
FORM. In the reliability based calculations, the impact of a varying uncertainty 
regarding the basic friction angle and the dilation angle was studied.  
 
First of all, to use a fixed value on the allowable coefficient of friction, as 
suggested in RIDAS (2008), in principle implies that all foundations at the 
Swedish dams should have the same shear strength. Of course, this is not the case; 
the shear strength varies for each foundation depending on the characteristics of 
the rock mass and the concrete rock interface. Still, according to the author’s 
knowledge, no large dams founded on rock have failed in Sweden. This indicates 
that the applied method has fulfilled its purpose but might also be conservative.  
 
Under the assumption that a horizontal persistent joint existed in the rock mass 
under the concrete monolith, performed calculations of the factors of safety and 
the safety indexes showed that acceptance requirements were not fulfilled for the 
deterministic nor for the reliability based calculations. The installation of pre-
stressed anchors cables increased safety, but not enough reach the target safety 
index. In these calculations, it is interesting to observe that the concept with a 
factor of safety does not have the capability to reflect the uncertainty associated 
with a specific variable. Since it does not have this ability, it also means that a 
uniform level of safety is not obtained when this method is used. 
 
Figure 6.5 compares the calculated factors of safety against calculated safety 
indexes. The figure illustrates how variations in the distribution of the total 
friction angle affect the safety index while the factor of safety remains unchanged.  
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Figure 6.5 Safety factor against calculated safety index.  
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In addition to this benefit, reliability based methods can incorporate additional 
information on return periods for different load cases, the number of concrete 
monoliths included in the dam etc. As a tool for decision-making, the reliability 
based methods are preferable in front of the factor of safety.  
 
However, both the calculated factor of safety and the reliability based method 
ended in the same decision. For example, at least in this case, it was not the type 
of calculation method that decided if the dam should be reinforced. Instead, it was 
the values on the parameters for the shear strength of the rock joint, together with 
engineering judgement. Values on the sensitivity factors in Table 6.8 and 6.11, 
together with the partial factors in Table 6.9 and 6.12, shows clearly that the 
parameters describing the shear strength are most important for the sliding 
stability. This also justifies the attempt in the previous chapters to describe the 
total friction angle for rock joints. 
 
Despite the work done in this thesis substantial uncertainties remain regarding the 
shear strength of a potential sliding plane in the rock mass. These uncertainties 
are not only related to the shear strength of the joints, but also to the persistence 
and orientation of them. In the calculations in this chapter, a persistent horizontal 
joint was assumed to exist three meters into the rock mass. In reality, this is a 
conservative assumption. If a distribution of the joint length and their orientations 
existed, it would be possible to estimate the probability that the case assumed in 
these calculations actually exists.  
 
The probability of failure for sliding along a persistent joint in the foundation, 
p(B), could be approximated as the probability of failure for this failure mode 
multiplied with the probability that there exist a joint in the foundation that is 
persistent, p(Ldis≥Ldam). This could be expressed as follows: 
 
( ) ( ) ( )dis dam dis dam dis damp B L L p B L L p L L∩ ≥ = ≥ ⋅ ≥   (6.23) 

 
If it is assumed that B and Ldis≥Ldam are statistically independent events, then the 
multiplication rule gives: 
 
( ) ( ) ( )dis dam dis damp B L L p B p L L∩ ≥ = ⋅ ≥     (6.24) 

 
where Ldis is the length of the horizontal joint and Ldam is the length of the dam. 
This also means that if we can approximate the distribution for the length of the 
joints, it is possible to estimate the probability that the length of the joint exceeds 
a certain length. Equation 6.24 indicates that calculated probabilities of failure in 
this chapter might be overestimated and that the factors of safety might be 
underestimated, i.e. the assumption of a persistent joint could be conservative.  
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With additional information of the joint system and on the shear strength of the 
joints, it might be possible to improve the calculation model. To some extent, 
additional information can be achieved with more investigations. However, quite 
large uncertainties will remain regarding the shear strength of the foundation. 
This means that the calculated safety is nominal and that many questions remains 
before the true probability of failure can be expressed. 
 
The safety indexes given in BKR (Boverket 2003) are mainly intended for 
materials such as steel and concrete where the material properties and the 
mechanical systems are well known. For rock masses and rock joints, their 
material properties are not well known and neither is the mechanical system. 
Therefore, it will probably not be possible to describe the probability of failure 
with the same level of detail as for structures made of steel and concrete. 
 
As a consequence, for the future development of sliding stability analyses of 
concrete dams in Sweden, different possible alternatives exist. A first step could 
be towards a more nuanced methodology based on safety factors where possible 
modes of failure are analyzed and where investigations are used in a larger extent 
to determine the shear strength and the persistence of the joints as proposed by 
Gustafsson et al. (2008), instead of a single allowable coefficient of friction. A 
further development of the methods could incorporate the use reliability based 
methods. Through extended investigations of the rock mass and research within 
the area of rock mechanics, it might be possible to come closer to the true 
probability of failure. However, an exact description of it is hard to attain. If 
reliability based methods should be used, it might also be necessary to accept 
some uncertainties in the calculation model and establish target safety index 
partly based on back calculation of existing Swedish dams.  
 

6.10 Conclusions 
 
In this chapter, a concrete column in the spillway of Långbjörn was analysed 
against sliding for a normal load case. The sliding stability was analysed under 
the assumption that a horizontal persistent joint existed three meters under the 
monolith. From these analyses, it can be concluded that: 
 

• The concept with an allowable coefficient of friction, or a factor of safety, 
does not result in a uniform level of safety.  

 
• Reliability based methods are preferable compared to the factor of safety. 

 
• It is suggested that future developments of sliding stability of concrete 

dams in Sweden should be performed in two steps. In the first step, a 
methodology based on safety factors and an increased use of 
investigations is recommended. In a second step, the use of reliability 
based methods is recommended where target safety indexes might be 
partly based on back calculated values from existing Swedish dams. 
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7 CONCLUSIONS 

 
This thesis started since difficulties in expressing the safety against sliding failure 
had been encountered in safety evaluations of existing Swedish dams. A main 
problem was how to estimate the shear strength of weakness planes in the rock 
mass under the dam. 
 
When Swedish guidelines for dam safety were compared with guidelines and 
regulations in other countries several critical conclusion could be drawn. (1) It 
was found that allowable safety factors for normal load cases are somewhat low, 
i.e. 1.35 instead of 1.5. On the other hand, the proposed allowable coefficient of 
friction at failure might be low. (2) This allowable coefficient of friction mainly 
originates from experience. No consideration is taken for how the values of the 
parameters for shear strength are determined, through rigorous investigations or 
by experience. (3) The coefficient of friction recommended in RIDAS is used as a 
control against sliding in both the interface between rock and concrete as well as 
for joints in the rock foundation, despite the fact that these potential sliding planes 
can have different shear strength. (4) No consideration is taken between high 
hazard dams and low hazard dams in the acceptance requirements. 
 
The limitations with the current guidelines in RIDAS (2008) led to new proposed 
guidelines presented by Gustafsson et al. (2008). The main difference compared 
to the present guidelines in RIDAS (2008) is that several potential failure modes 
must be analysed and that cohesion can be used for low hazard dams. 
 
In the past few years, there has been a discussion in Sweden about the 
implementation of reliability based methods in geotechnical and dam design. 
With the implementation of Eurocode, this discussion has been intensified. A 
natural way for the development of RIDAS would be in a direction towards 
Eurocode and reliability based methods. Two slightly different approaches are 
possible, limit states analyses with partial factors or a design directly based on 
reliability based methods. Since each concrete dam and its foundation in many 
aspects is unique, the latter is recommended. There might be a risk when fixed 
partial factors are used that they have to be large in order to cover all design 
situations. This can result in a design which is too conservative. 
 
Regarding the peak shear strength of unfilled and rough joints, the performed 
literature study showed that several failure criteria have been proposed to express 
the shear strength. However, most of them are only valid in laboratory scale. The 
suggestions that exist in the literature for how the in situ friction angle at a full 
field size should be estimated are not uniform. To neglect the dilation angle as 
proposed by Papaliangas (1996) seems to be too conservative with respect to the 
results from back analysed failures of rock slopes (Patton 1966 and McMahon 
1986). On the other hand, to use the average block size of the rock mass, as 
suggested by Barton and Bandis (1982), imply that individual blocks can rotate 
and arrange themselves in contact with the underlying surface. This assumption is 
not obvious under a concrete dam.  
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The major drawback with these methods is that they mainly are based on 
empirical grounds. Under which conditions they could be used are not clear since 
a detailed understanding of the mechanisms behind the scale effect is missing. It 
was therefore concluded that there exists a need for a more detailed understanding 
in this question.  
 
In an attempt to increase the understanding of the scale effect and the mechanisms 
that govern the peak shear strength of rock joints, a conceptual model was 
derived. This conceptual model suggests that the total friction angle at full field 
scale could be expressed according to the primary part of Patton’s (1966) 
criterion, i.e. total friction angle is the sum of a basic friction angle and a dilation 
angle. No asperity failure components, sn, are present at full field scale for hard 
rocks since the inclination of the asperities involved in the shearing have an 
inclination lower than required to shear off the asperities at their base.  
 
The model further suggests that the basic friction angle is a constant that mainly 
depends on the composition of the intact rock and is therefore independent of 
scale. 
 
Most results presented in the literature points towards the fact that the scale effect 
originates from the surface roughness. The conceptual model suggests that the 
main mechanism behind it is that the number and size of the contact points 
change with scale as a result of roughness. This reasoning, combined with the 
adhesion theory and the fact that surface roughness could be correlated against a 
self-affine fractal model, suggests that for rough and perfectly mated joints under 
a constant normal load, the number of contact points would increase proportional 
to the area of the sample. As a consequence, no scale effect would be present for 
these types of joints since the average size of the contact points would not change. 
 
On the other hand, if the joint is rough but unmated, a completely different effect 
occurs. Under the assumption that different samples in different scales under a 
constant normal load has undergone a relative shear displacement prior to the 
shearing which is equal to approximately half of the maximum asperity length 
that is present on the sample, all samples will have the same number of contact 
points. As a consequence, the length of the contacting asperities will increase 
proportional to the increase of the sample length. This occurs since the maximum 
asperity length present on the sample increase proportional to the increase of the 
length of the sample. The inclination of these contacting asperities will therefore 
be reduced with scale, i.e. a “full” scale effect will be present.  
 
This suggests that the scale effect is not a mechanism that can be observed for all 
types of joints. It would also mean that, depending on the degree of matedness, 
the scale effect could range from no scale effect at all to a “full” scale effect. For 
design purposes, it would therefore be important to distinguish between mated 
and unmated joints.  
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Verifying analysis of the conceptual model showed that it can (1) propose an 
explanation for the measured dilation angle for laboratory samples of perfectly 
mated, unfilled and rough joints and (2) suggest an explanation for changes in the 
dilation angle due to an increased scale and different degrees of matedness. 
However, a complete verification of the model is difficult to perform since it 
would imply that shear test in situ at field size scale have to be performed. 
However, the results obtained with this conceptual model suggest that the dilation 
angle at a scale of 10 m might range between 0 to 15o as reported by Patton 
(1966).  
 
An interesting question is why no back calculated rock slides resulted in higher 
friction angles, i.e. as those that could be expected for fresh mated joints. A 
possible answer is that there exists a correlation between aperture and persistence 
as reported by for example Vermilje and Scholtz (1995). Joints with a small 
aperture, i.e. mated joints, most likely have a short persistence and could therefore 
not constitute a large sliding plane in the rock mass. On the other hand, joints with 
larger aperture, i.e. unmated or partly unmated joints, have a longer persistence 
and could therefore constitute sliding planes necessary for rock slides to occur. 
For design purposes, this suggests that it is joints with large aperture that should 
be looked after when investigations are performed. 
 
In order to study the total friction angle of unfilled and rough joints at different 
scales, eighteen shear tests were performed. The samples were taken from the 
rock mass under or near the concrete dam Långbjörn in the northern part of 
Sweden. The test included seventeen laboratory shear tests and one in situ shear 
test with a sample scale of 700 by 700 mm as recommended by ISRM for in situ 
shear test. The laboratory tests had a sample length between 70 to 250 mm. All 
tests were performed at a normal stress equal to 0.8 MPa, which was the 
maximum calculated stress under the concrete dam. The exception was the in situ 
shear test where a normal stress equal to 0.5 MPa was used. 
 
The results from these tests point towards the fact that the basic friction angle is a 
scale independent property as suggested by, for example, Barton and Choubey 
(1977). The mean value of the basic friction angle for the coarse grained granite 
was 36o and the COV≈0.07-0.10. However, the basic friction at peak shear 
strength for the in situ shear test gave a high value on the basic friction angle. 
Problems with some of the LVDT´s that measured normal displacements resulted 
in that the obtained basic friction angle became uncertain. Furthermore, two 
parallel sliding planes existed for one side of the sample which resulted in 
reduced dilation for that side. It is possible that this affected the calculated 
dilation angle and thereby also the measured basic friction angle for this test.  
 
The results also showed that the total friction angle, or the dilation, was highest 
for the smallest samples in drill core scale. It was also observed that the total 
friction angle observed in the in situ test corresponded to a value of 0.7 for the 
constant of matedness.  
 
An interesting observation was that the samples at 125 mm and 250 mm scale 
showed lower friction angles than anticipated. The joint surfaces of these samples 
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were also weathered and pieces of intact rock were lost during the preparation of 
the samples. The fragmentation of the joints surfaces might also be an effect from 
blast damages. When the surface was analysed before and after shearing for two 
of these samples, it was seen that contact points were not located at the steepest 
asperities facing the shear direction, which is the case for fresh, mated and 
unweathered joints. Instead, the contact points developed at points of initial 
contact or where the initial aperture was small. This indicates a more random 
distribution of the contact points over the surface. In turn, this could imply that it 
is the average inclination of the asperities, and not the steepest inclination, that 
govern that dilation angle for weathered joints. However, more tests need to be 
performed on weathered joints before this could be verified. Nevertheless, it is 
clear that degree of weathering and matedness, as suggested by Zhao (1997 a,b), 
has a large influence on the peak shear strength. 
 
Despite the authors attempt to collect samples with uniform conditions for the 
joints properties at all sample scales, all of the samples in different scales 
exhibited differences in degree of weathering and infilling material. To draw any 
firm conclusions from these shear tests regarding the scale effect are therefore not 
possible. If the scale effect should be investigated in future test series, it is 
recommended that it is performed on samples where the properties of the joint 
surface could be better controlled. For example, this might be achieved by using 
tensile induced fresh joints.  
 
A sliding stability analysis of a monolith at Långbjörn concrete dam was carried 
out with both deterministic and reliability based methods. The results from this 
analysis were compared and discussed. From this, it was concluded that the 
concept with a factor of safety does not result in a uniform level of safety. 
Furthermore, reliability based methods are preferable in front of the factor of 
safety since they can incorporate the effect of the uncertainties for each variable 
together with other types of additional information, such as return periods for 
different load cases etc., in order to achieve a more uniform level of safety. It is 
also suggested that future development of sliding stability of concrete dams in 
Sweden are performed in two steps. In the first step, a more nuanced methodology 
based on safety factors and an increased use of investigations is suggested. In the 
second step, it is recommended to start using reliability based methods where 
target safety indexes partly might be based on back calculated values from 
existing Swedish dams.  
 



Chapter 8 Suggestions for future work 

 153

8 SUGGESTIONS FOR FUTURE WORK 

 
During the work with this thesis, the author has gained an increased 
understanding of the complex mechanisms that underlie the shear strength of rock 
joints. This is especially true regarding how contact points affect the shear 
strength. In most cases, when the shear strength of rock joints is estimated, only 
surface roughness is characterized. However, factors such as initial matedness and 
relative displacement appear to be important parameters which in most cases are 
not considered.  
 
The conceptual model described in this thesis suggests that the scale effect is not 
a mechanism that can be observed for all types of joints. Perfectly mated and 
unweathered rough joints are suggested to not exhibit any scale effects while 
rough unmated joints where previous shear displacements have occurred can 
exhibit a full scale effect, i.e. the number of contact points are in principle 
constant with increased scale. 
 
Even though it was the author’ s intention to study the scale effect of rock joints, 
the behaviour suggested in the conceptual model has not been completely 
verified. It is therefore suggested that future work focuses on further verification 
of the model and into the understanding on how contact points changes during 
different normal loads, relative shear displacements and different degrees of 
weathering. By doing so, it is the author’s belief that an increased understanding 
on the scale effect, and the shear strength, of rock joints can be achieved. 
 
If the future work suggested above is shown to agree with the behaviour 
suggested with the conceptual model, a further development of the model could 
be done to estimate not only the mean value but also the variance of the friction 
angle at in situ scale. A factor which is important if the reliability of the dams 
should be determined. 
 
In the past few years, there has been a discussion of the implementation of 
reliability based methods in geotechnical and dam design. In many aspects, 
reliability based design is preferable, since it enables to achieve a more uniform 
level of safety compared to the total safety factor. However, it is not obvious 
which reliability requirements, i.e. target safety index that should be used. It is 
recommended that safety indexes for a number of Swedish dams are back 
calculated. The results from such calculations could be used as guidance in order 
to attain target safety indexes. 
 
Furthermore, the work in this thesis only considered the sliding in rock joints 
under the dam. In order to be able to perform complete analyses of the sliding 
stability, the shear strength in the concrete-rock interface has to be estimated. In 
many aspects, a question at least as complex as the scale effect of rock joints. In 
particular, if cohesion should be accounted for or not. Today, methods exist to 
estimate the shear strength of the concrete-rock interface. However, results by 
Gustafsson et al. (2008) indicated that even though cohesion might exist, 
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uncertainties associated with this parameter are so large that it might not be 
possible to fulfil acceptance requirements for high hazard dams. Another 
interesting aspect is that the results from the conceptual model suggest that joints 
with a perfect matedness would have a high friction angle without any scale 
effects. This would imply that once cohesion is broken, the total friction angle 
may still be high in the interface. In order to investigate the shear strength in the 
concrete rock interface, further research is recommended. 
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Figure A.1 Measured friction angle and dilation angle, together with non-dilational friction angle 
for test S1. 
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Figure A.2 Measured friction angle and dilation angle, together with non-dilational friction angle 
for test S2. 
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Figure A.3 Measured friction angle and dilation angle, together with non-dilational friction angle 
for test S3. 
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Figure A.4 Measured friction angle and dilation angle, together with non-dilational friction angle 
for test S4. 
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Figure A.5 Measured friction angle and dilation angle, together with non-dilational friction angle 
for test S5. 
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Figure A.6 Measured friction angle and dilation angle, together with non-dilational friction angle 
for test S6. 
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Figure A.7 Measured friction angle and dilation angle, together with non-dilational friction angle 
for test S8. 
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Figure A.8 Measured friction angle and dilation angle, together with non-dilational friction angle 
for test L3. 
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Figure A.9 Measured friction angle and dilation angle, together with non-dilational friction angle 
for test L4. 
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Figure A.10 Measured friction angle and dilation angle, together with non-dilational friction 
angle for test L6. 
 
 
 
 
 



Shear strength of unfilled and rough rock joints in sliding stability analyses of concrete dams 

 VI 

 
 
 
 

-10

0

10

20

30

40

50

60

0 1 2 3 4 5 6

Shear displacement (mm)

Fr
ic

tio
n 

an
gl

e 
(d

eg
re

es
)

Measured
Non dilational
Dilatation angle

 
Figure A.11 Measured friction angle and dilation angle, together with non-dilational friction 
angle for test L7. 
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Figure A.12 Measured friction angle and dilation angle, together with non-dilational friction 
angle for test L8. 
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Figure A.13 Measured friction angle and dilation angle, together with non-dilational friction 
angle for test L9. 
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Figure A.14 Measured friction angle and dilation angle, together with non-dilational friction 
angle for test L10. 
 
 
 
 



Shear strength of unfilled and rough rock joints in sliding stability analyses of concrete dams 

 VIII

 
 
 
 
 
 
 
 
 
 
 
 
 



Appendix B, Photos of LTU samples after shear testing 

 IX

APPENDIX B, PHOTOS OF LTU SAMPLES AFTER SHEAR TESTING 

 
Picture B.1a Sample S1 after the shear test (lower part). 
 

 
Picture B.1b Sample S1 after the shear test (upper part). 
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Picture B.2a Sample S2 after the shear test (lower part). 
 
 

 
Picture B.2b Sample S2 after the shear test (upper part). 
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Picture B.3a Sample S3 after the shear test (lower part). 
 
 

 
Picture B.3b Sample S3 after the shear test (upper part). 
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Picture B.4a Sample S4 after the  shear test (lower part). 
 
 

 
Picture B.4b Sample S4 after the shear test (upper part). 
 



Appendix B, Photos of LTU samples after shear testing 

 XIII

 
 

 
Picture B.5a Sample S5 after the shear test (lower part). 
 
 

 
Picture B.5b Sample S5 after the shear test (upper part). 
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Picture B.6a Sample S6 after the shear test (lower part). 
 
 

 
Picture B.6b Sample S6 after the shear test (upper part). 
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Picture B.7a Sample S8 after the shear test (lower part). 
 
 

 
Picture B.7b Sample S8 after the shear test (upper part). 
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Picture B.8a Sample L3 after the shear test (lower part). 
 
 

 
Picture B.8b Sample L3 after the shear test (upper part). 
 



Appendix B, Photos of LTU samples after shear testing 

 XVII

 
 

 
Picture B.9a Sample L4 after the shear test (lower part). 
 
 

 
Picture B.9b Sample L4 after the shear test (upper part). 
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Picture B.10a Sample L6 after the shear test (lower part). 
 
 

 
Picture B.10b Sample L6 after the shear test (upper part). 
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Picture B.11a Sample L7 after the shear test (lower part). 
 
 

 
Picture B.11b Sample L7 after the  shear test (upper part). 
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Picture B.12a Sample L9 after the shear test (lower part). 
 
 

 
Picture B.12b Sample L9 after the shear test (upper part). 
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Picture B.13a Sample L9 after the shear test (lower part). 
 
 

 
Picture B.13b Sample L9 after the shear test (upper part). 
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Picture B.14a Sample L10 after the shear test (lower part). 
 
 

 
Picture B.14b Sample L10 after the shear test (upper part). 
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APPENDIX C, ASSUMED NORMAL DISTRIBUTIONS FOR BASIC 
FRICTION ANGLE 
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Figure C.1 Basic friction angle, φb~N(36;2.52) 
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Figure C.2 Basic friction angle, φb~N(36;3.6) 
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APPENDIX D, ASSUMED NORMAL DISTRIBUTIONS FOR DILATION 
ANGLE 
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Figure D.1 Dilation angle, i~N(9;1.35) 
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Figure D.2 Dilation angle, i~N(9;2.70) 
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